Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > CNano Launches Carbon Nanotube Based Conductive Paste Products for Lithium Ion Battery Applications

Abstract:
CNano Technology Limited (CNano) announced that it officially launched carbon nanotube based super conductive paste products for Lithium ion battery applications, and also introduced the products into the Japanese market.

CNano Launches Carbon Nanotube Based Conductive Paste Products for Lithium Ion Battery Applications

Santa Clara, CA, | Posted on June 9th, 2010

The super conductive paste is leveraging both physical and electrical properties of carbon nanotubes, and is used as the conductive additive for both Lithium ion battery cathodes and anodes to enhance battery energy and power density, cycle life and safety. This paste product is based on the volume produced carbon nanotubes from CNano. It replaces the traditional conductive additives for Lithium ion batteries with less loading but greatly improving battery performance, especially for high power applications such as electrical vehicles and power tools.

The super conductive paste is pre-dispersed in the selective solvents for better mixing with cathode and anode materials. CNano has been conducting product qualifications with selective battery customers since 2009, and is in the process to ramp up production capacity to meet customers' demands.

"With ever increasing demand for energy density of Lithium ion batteries in consumer electronics, and emerging battery requirements for electrical automobiles, our super conductive paste offers new performance improvement opportunity for battery industry," said Xindi Wu, President and CEO of CNano. "This is the first commercial carbon nanotube based product introduced for Lithium ion battery market."

With the commissioning of the world's largest carbon nanotube production capacity of 500 Tons per year in 2009, CNano is ready to provide high quality, volume carbon nanotube based products to our existing and future customers.

####

About CNano
CNano was founded in 2007 to change the economics of producing a wide range of applications based on extremely pure carbon nanotubes, focusing on energy storage and electronic applications. The company’s headquarters are in Santa Clara, CA with manufacturing located in China. CNano has significant intellectual property, existing products, and established customers. It has received venture capital funding from CMEA Capital, Pangaea Ventures, and WI Harper.

For more information, please click here

Contacts:
Xindi Wu, President and CEO
CNano Technology Limited
3333 Bowers Ave., Suite 130
Santa Clara, CA 95054
USA
Phone: 408-826-0918
Fax: 408-899-5157

Copyright © CNano

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A 'smart dress' for oil-degrading bacteria July 24th, 2016

New remote-controlled microrobots for medical operations July 23rd, 2016

New superconducting coil improves MRI performance: UH-led research offers higher resolution, shorter scan time July 23rd, 2016

New probe developed for improved high resolution measurement of brain temperature: Improved accuracy could allow researchers to measure brain temperature in times of trauma when small deviations in temperature can lead to additional brain injury July 23rd, 2016

Products

Oxford Nanoimaging to provide desktop super-resolution microscopes May 10th, 2016

Abalonyx launches Reduced Graphene Oxide Product: Abalonyx has successfully scaled up production of thermally reduced graphene oxide (rGO) in its Tofte, Norway, production facility. This product is now offered to customers in Kg-quantities May 10th, 2016

New Generation of Graphene Reinforced Carbon Fibre Prepreg Products March 14th, 2016

New Generation of Graphene Reinforced Carbon Fibre Prepreg Products March 10th, 2016

Nanotubes/Buckyballs/Fullerenes

Easier, faster, cheaper: A full-filling approach to making nanotubes of consistent quality: Approach opens a straightforward route for engineering the properties of single-wall carbon nanotubes July 19th, 2016

Sensing trouble: A new way to detect hidden damage in bridges, roads: University of Delaware engineers devise new method for monitoring structural health July 8th, 2016

Wireless, wearable toxic-gas detector: Inexpensive sensors could be worn by soldiers to detect hazardous chemical agents July 4th, 2016

Nanotubes' 'stuffing' as is: A scientist from the Lomonosov Moscow State University studied the types of carbon nanotubes' 'stuffing' June 2nd, 2016

Announcements

A 'smart dress' for oil-degrading bacteria July 24th, 2016

New remote-controlled microrobots for medical operations July 23rd, 2016

New superconducting coil improves MRI performance: UH-led research offers higher resolution, shorter scan time July 23rd, 2016

New probe developed for improved high resolution measurement of brain temperature: Improved accuracy could allow researchers to measure brain temperature in times of trauma when small deviations in temperature can lead to additional brain injury July 23rd, 2016

Energy

Researchers discover key mechanism for producing solar cells: Better understanding of perovskite solar cells could boost widespread use July 21st, 2016

The future of perovskite solar cells has just got brighter -- come rain or shine: Korean researchers at POSTECH have succeeded in developing high-efficiency perovskite solar cells that retain excellent performance over two months in a very humid condition July 21st, 2016

Scientists develop way to upsize nanostructures into light, flexible 3-D printed materials: Virginia Tech, Livermore National Lab researchers develop hierarchical 3-D printed metallic materials July 20th, 2016

Rice's 'antenna-reactor' catalysts offer best of both worlds: Technology marries light-harvesting nanoantennas to high-reaction-rate catalysts July 18th, 2016

Automotive/Transportation

Researchers improve catalyst efficiency for clean industries: Method reduces use of expensive platinum July 8th, 2016

Artificial synapse rivals biological ones in energy consumption June 21st, 2016

Marrying superconductors, lasers, and Bose-Einstein condensates: Chapman University Institute for Quantum Studies (IQS) member Yutaka Shikano, Ph.D., recently had research published in Scientific Reports June 20th, 2016

Stanford researchers find new ways to make clean hydrogen and rechargable zinc batteries June 18th, 2016

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Synthesized microporous 3-D graphene-like carbons: IBS research team create carbon synthesis using zeolites as a template July 1st, 2016

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

Yale researchers’ technology turns wasted heat into power June 27th, 2016

Stanford researchers find new ways to make clean hydrogen and rechargable zinc batteries June 18th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic