Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > NanoViricides Reports that Significant Efficacy was Achieved in Initial Studies on Dengue Virus

Abstract:
NanoViricides, Inc. (OTC BB: NNVC.OB) (the "Company") reports that its anti-Dengue drug candidates demonstrated significant efficacy in the recently completed preliminary cell culture studies. The studies were performed in the laboratory of Dr. Eva Harris, Professor of Infectious Diseases at the University of California, Berkeley (UC Berkeley).

NanoViricides Reports that Significant Efficacy was Achieved in Initial Studies on Dengue Virus

West Haven, CT | Posted on June 1st, 2010

Several of the anti-Dengue nanoviricides(R) demonstrated a dose-dependent inhibition of Dengue virus infectivity in two distinctly different cell culture models of dengue virus infection. These studies employed the serotype dengue virus 2. The Company believes that these nanoviricide drug candidates mimic a common natural host cell receptor by which the four different dengue virus serotypes bind to the body's host cells, thus causing disease. The virus is "fooled" into thinking it has attached to its target cell and instead enters a nanoviricide nanomicelle, it is believed. A nanoviricide would thus stop the spread of the viral infection to new uninfected cells.

The Company believes that a broad-spectrum nanoviricide that is highly effective against all four dengue serotypes is now feasible, based on the current data. Such a drug would circumvent the problems caused by a phenomenon called "Antibody-Dependent-Enhancement" or "ADE".

Dr. Eva Harris is a leading researcher in the field of dengue viruses. Her group has developed a unique animal model for dengue virus infection and disease that effectively emulates the phenomenon seen in humans, called "Antibody-Dependent Enhancement (ADE)" which is thought to lead to the increased incidence of the more severe disease, dengue hemorrhagic fever and dengue shock syndrome. Selected anti-dengue nanoviricides will be tested in preliminary animal studies using this model.

The Company developed a library of chemical ligands that are expected to bind to the dengue virus envelope proteins of several different subtypes of dengue viruses. These ligands were developed using the results of sophisticated, well established, molecular modeling software. A number of candidate nanoviricides that are capable of attacking the dengue virus were created using these ligands. A "nanoviricide" is a chemical substance made by covalently attaching a number of copies of a virus-binding ligand to a base polymeric micelle, that the Company calls TheraCour(R). It is believed that when a nanoviricide binds to a virus particle, the interaction would extend to the binding of a large number of ligands to the virus surface, and the flexible nanomicelle would then engulf the virus, rendering it incapable of infecting a cell.

Dengue virus is a member of the Flaviviridae family of viruses, some of which are often spread by ticks and mosquitoes. Other important viruses in this family include Yellow Fever virus, West Nile virus and Hepatitis C virus. The market for novel treatments for Hepatitis C is estimated to be in the billions of dollars in the US alone.

When a person is exposed to dengue for the first time, the disease usually is not severe. When the same person is later infected by a different dengue serotype, the body produces antibodies against the previous dengue serotype. The new dengue virus uses these antibodies to infect more cells, thus leading to severe dengue disease. Such a secondary infection may lead to dengue hemorrhagic fever or dengue shock syndrome with high fatality rates. The ADE phenomenon has made development of vaccines and antibody therapeutics against Dengue a tremendous challenge. A vaccine works by creating antibodies against the included serotypes.

Currently there are no approved vaccines for the prevention of dengue, nor drugs for treatment of dengue virus infection. The worldwide market size for an effective anti-dengue treatment may be as large as that for Hepatitis C virus treatment, reaching billions of dollars, based on current population exposure data. Dengue, dengue hemorrhagic fever and dengue shock syndrome are emerging as serious global health problems. Dengue is endemic throughout much of the world and now threatens over 3 billion people world-wide or 40% of the world's population. Because of its world-wide distribution, dengue is considered an emerging threat in the United States. Dengue is officially considered a "neglected tropical disease" by the World Health Organization. About 50-100 million people are infected by dengue virus every year. Recently, the government of Cali, Columbia declared a dengue emergency because of the number of dengue infections and deaths. Globalization and climate change along with changes in the ecology of the virus-carrying mosquito are accelerating the spread of the virus. Without proper treatment, DHF fatality rates can exceed 20%. (Source: WHO Dengue and dengue hemorrhagic fever Fact Sheet No. 117, March 2009; www.who.int/mediacentre/factsheets/fs117/en/).

This press release contains forward-looking statements that reflect the Company's current expectation regarding future events. Actual events could differ materially and substantially from those projected herein and depend on a number of factors. Certain statements in this release, and other written or oral statements made by NanoViricides, Inc. are "forward-looking statements" within the meaning of Section 27A of the Securities Act of 1933 and Section 21E of the Securities Exchange Act of 1934. You should not place undue reliance on forward-looking statements since they involve known and unknown risks, uncertainties and other factors which are, in some cases, beyond the Company's control and which could, and likely will, materially affect actual results, levels of activity, performance or achievements. The Company assumes no obligation to publicly update or revise these forward-looking statements for any reason, or to update the reasons actual results could differ materially from those anticipated in these forward-looking statements, even if new information becomes available in the future. Important factors that could cause actual results to differ materially from the company's expectations include, but are not limited to, those factors that are disclosed under the heading "Risk Factors" and elsewhere in documents filed by the company from time to time with the United States Securities and Exchange Commission and other regulatory authorities. Although it is not possible to predict or identify all such factors, they may include the following: demonstration and proof of principle in pre-clinical trials that a nanoviricide is safe and effective; successful development of our product candidates; our ability to seek and obtain regulatory approvals, including with respect to the indications we are seeking; the successful commercialization of our product candidates; and market acceptance of our products.

####

About NanoViricides
NanoViricides, Inc. (www.nanoviricides.com) is a development stage company that is creating special purpose nanomaterials for viral therapy. The Company's novel nanoviricide(TM) class of drug candidates are designed to specifically attack enveloped virus particles and to dismantle them. The Company is developing drugs against a number of viral diseases including H1N1 swine flu, H5N1 bird flu, seasonal Influenza, HIV, oral and genital Herpes, viral diseases of the eye including EKC and herpes keratitis, Hepatitis C, Rabies, Dengue fever, and Ebola virus, among others.

About Dr. Eva Harris' Laboratory at the University of California, Berkeley
The Harris Laboratory in the Division of Infectious Diseases in the School of Public Health at the University of California, Berkeley (www.Berkeley.edu) has developed a multidisciplinary approach to study the molecular virology, pathogenesis, and epidemiology of dengue, the most prevalent mosquito-borne viral disease in humans. Their work addresses viral and host factors that modulate disease severity. One major research focus has been the development of a mouse model to study viral tropism and pathogenesis, investigate the immune response to dengue virus infection, and evaluate candidate anti-viral therapeutics. Dr. Harris' field work focuses on laboratory-based and epidemiological studies of dengue in endemic Latin American countries, particularly in Nicaragua, where ongoing projects include clinical and biological studies of severe dengue, a pediatric cohort study of dengue and influenza transmission in Managua, and a project on evidence-based, community-derived interventions for prevention of dengue via control of its mosquito vector.

For more information, please click here

Contacts:
NanoViricides, Inc.
Amanda Schuon, 310-550-7200

Copyright © Marketwire

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Multi-million pound project to use nanotechnology to improve safety September 4th, 2015

Magnetic wormhole connecting 2 regions of space created for the first time: The device could have applications in medicine, opening up ways to make MRIs more comfortable for patients September 4th, 2015

Tongfang Global and QD Vision Partner to Bring Wide Color Gamut to Global Television Lines: Color IQTM quantum dots help boost company’s focus on superior color reproduction September 3rd, 2015

QEOS and GLOBALFOUNDRIES to Offer Industry’s First CMOS Platform for MillimeterWave Markets: GLOBALSOLUTIONSSM Partnership will enable next-generation wireless technologies for applications in IoT, 5G and automotive September 3rd, 2015

Possible Futures

Magnetic wormhole connecting 2 regions of space created for the first time: The device could have applications in medicine, opening up ways to make MRIs more comfortable for patients September 4th, 2015

Silk bio-ink could help advance tissue engineering with 3-D printers September 2nd, 2015

Sediment dwelling creatures at risk from nanoparticles in common household products August 13th, 2015

Harris & Harris Group Reports Financial Statements as of June 30, 2015, and Announces a Stock Repurchase Program August 10th, 2015

Academic/Education

Sustainable nanotechnology center September 1st, 2015

National Science Foundation Selects SUNY Poly CNSE for Expanded $2.1M Northeast Advanced Technological Education Center: NSF Center Locates to NanoCollege in Support of Flourishing Tech Industry in NYS September 1st, 2015

Announcing Oxford Instruments and School of Physics signing a Memorandum of Understanding August 26th, 2015

Kwansei Gakuin University in Hyogo, Japan, uses Raman microscopy to study crystallographic defects in silicon carbide wafers August 25th, 2015

Nanomedicine

Magnetic wormhole connecting 2 regions of space created for the first time: The device could have applications in medicine, opening up ways to make MRIs more comfortable for patients September 4th, 2015

Making nanowires from protein and DNA September 3rd, 2015

Reversible Writing with Light: Self-assembling nanoparticles take their cues from their surroundings September 3rd, 2015

Silk bio-ink could help advance tissue engineering with 3-D printers September 2nd, 2015

Announcements

Multi-million pound project to use nanotechnology to improve safety September 4th, 2015

Magnetic wormhole connecting 2 regions of space created for the first time: The device could have applications in medicine, opening up ways to make MRIs more comfortable for patients September 4th, 2015

Making nanowires from protein and DNA September 3rd, 2015

Making fuel from light: Argonne research sheds light on photosynthesis and creation of solar fuel September 3rd, 2015

Nanobiotechnology

Making nanowires from protein and DNA September 3rd, 2015

A marine creature's magic trick explained: Crystal structures on the sea sapphire's back appear differently depending on the angle of reflection September 2nd, 2015

Using DNA origami to build nanodevices of the future September 1st, 2015

Researchers use DNA 'clews' to shuttle CRISPR-Cas9 gene-editing tool into cells August 30th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic