Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Taiwan Scientists Advance Technology Used for Quantitative Measurement of Nano-/microparticle Uptake by Cells

Abstract:
A Taiwan research team has developed a new approach for investigating the amount of nano-/microparticles taken up by mammalian cells.

Taiwan Scientists Advance Technology Used for Quantitative Measurement of Nano-/microparticle Uptake by Cells

Taiwan | Posted on May 31st, 2010

This project was led by Dr. Chung-Hsuan Chen, Distinguished Research Fellow and Director of the Genomics Research Center (GRC) at Academia Sinica, and Dr. Wen-Ping Peng, a Jointly-appointed Assistant Professor of the GRC and the Department of Physics at National Dong Hwa University of Taiwan, in collaboration with Dr. Alice Yu, Distinguished Research Fellow and Deputy Director of the GRC. The research was published online in the leading international journal, Angewandte Chemie, on April 13, 2010.

Nano-/microparticles have been pursued by researchers in recent years as possible carriers for drug delivery. Therefore, effective quantitative measurement of the cellular uptake of nano-/microparticles is of great importance. Conventionally these tiny particles have been measured using certain types of mass spectrometry (an analytical technique for the determination of the elemental composition of a sample or molecule) including Inductively Coupled Plasma Atomic Emission Spectroscopy and Inductively Coupled Plasma Mass Spectrometry (ICP-MS). However, these methods of measurement are limited to elemental particles such as gold nanoparticles.

For this study, scientists used a different type of spectrometer called the Charge-Monitoring Mass Spectrometer (CMS), a device which was itself developed by a group at the GRC and the Institute of Atomic and Molecular Sciences at Academia Sinica in 2007 to measure single cancer cells at higher speeds. This time, researchers from the GRC Physical and Computational Genomics group used this recently-developed device to measure the masses of cells of nano-/microparticle, a novel approach for investigating the amount of nano-/microparticle uptake into mammalian cells.

The group's findings indicate that the CMS is an adequate tool for time-resolved measurements of nanogold uptake by cells. They also found that the CMS could measure particles over a larger size range from 30nm to 250 nm. In addition, as the CMS only takes two-steps to examine the nanogold and the ICP-MS takes five-steps, the CMS analysis is more time-efficient. Most importantly, however, the CMS will also be able to measure non-metal nano particles, including polymeric nanoparticles, carbon nanotubes, diamond nanoparticles, viruses, micelles and liposomes in addition to elemental particles.

"This research brings more efficiency to the measurement and detection of the mass changes of a cell as a result of malignancy or the uptake of nanoparticles. The CMS is proven to be useful in streamlining the determination the quantity of both gold and polystyrene nano-/microparticles taken up into cells. We expect that such device will be of importance in medical applications," noted the first author of the study, Huan-Chang Lin, a Ph.D. candidate in the Department of Bio-Industrial Mechatronics Engineering at National Taiwan University.

This research is co-funded by the National Science Council, Academia Sinica and the National Health Research Institute. The full list of authors is Huan-Chang Lin, Hsin-Hung Lin, Cai-Yu Kao, Alice L. Yu, Wen-Ping Peng and Chung-Hsuan Chen.

The full-text of the study was published under the title Quantitative Measurement of Nano-/Microparticle Endocytosis by Cell Mass Spectrometry, available at the Angewandte Chemie website at: www3.interscience.wiley.com/journal/123349954/abstract?CRETRY=1&SRETRY=0.

Angewandte Chemie is published by the German Chemical Society. In 2008 it had an impact factor of 10.879.

####

For more information, please click here

Contacts:
Media Contacts:
Dr. Chung-Hsuan Chen
Genomics Center, Academia Sinica
(Tel) +886-2-2787-1200

Dr. Wen-Ping Peng
Department of Physics
National Dong Hwa University
(Tel) +886-3-8633-733

Fang-Hsun Yeh
Public Relations Office, Central Office of Administration
Academia Sinica
(Tel) +886-2-2789-8824
(M) 0922-036-691


Mei-Hui Lin
Public Relations Office, Central Office of Administration
Academia Sinica
(Tel) +886-2-2789-8821
(M) 0921-845-234

Copyright © Academia Sinica

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Quantum teleportation on a chip: A significant step towards ultra-high speed quantum computers April 1st, 2015

So, near and yet so far: Stable HGNs for Raman April 1st, 2015

Two-dimensional dirac materials: Structure, properties, and rarity April 1st, 2015

3-D neural structure guided with biocompatible nanofiber scaffolds and hydrogels April 1st, 2015

Govt.-Legislation/Regulation/Funding/Policy

Two-dimensional dirac materials: Structure, properties, and rarity April 1st, 2015

Rutgers, NIST physicists report technology with potential for sub-micron optical switches March 31st, 2015

SUNY Poly CNSE and Title Sponsor SEFCU Name Capital Region Teams Advancing to the Final Round of the 2015 New York Business Plan Competition March 30th, 2015

Princess Margaret scientists convert microbubbles to nanoparticles: Harnessing light to advance tumor imaging, provide platform for targeted treatment March 30th, 2015

Academic/Education

SUNY Poly CNSE and Title Sponsor SEFCU Name Capital Region Teams Advancing to the Final Round of the 2015 New York Business Plan Competition March 30th, 2015

LAMDAMAP 2015 hosted by the University March 26th, 2015

SUNY Poly & M+W Make Major Announcement: Major Expansion To Include M+W Owned Gehrlicher Solar America Corporation That Will Create up to 400 Jobs to Develop Solar Power Plants at SUNY Poly Sites Across New York State March 26th, 2015

SUNY POLY CNSE to Host First Ever Northeast Semi Supply Conference (NESCO) Conference Will Connect New and Emerging Innovators in the Northeastern US and Canada with Industry Leaders and Strategic Investors to Discuss Future Growth Opportunities in NYS March 25th, 2015

Nanomedicine

A novel way to apply drugs to dental plaque Nanoparticles release drugs to reduce tooth decay April 1st, 2015

3-D neural structure guided with biocompatible nanofiber scaffolds and hydrogels April 1st, 2015

Nanomedicine shines light on combined force of nanomedicine and regenerative medicine March 31st, 2015

Prototype 'nanoneedles' generate new blood vessels in mice: Scientists have developed tiny 'nanoneedles' that have successfully prompted parts of the body to generate new blood vessels, in a trial in mice March 31st, 2015

Announcements

Quantum teleportation on a chip: A significant step towards ultra-high speed quantum computers April 1st, 2015

So, near and yet so far: Stable HGNs for Raman April 1st, 2015

Two-dimensional dirac materials: Structure, properties, and rarity April 1st, 2015

3-D neural structure guided with biocompatible nanofiber scaffolds and hydrogels April 1st, 2015

Tools

So, near and yet so far: Stable HGNs for Raman April 1st, 2015

PIHera: Largest Family of Piezo Stage Scanners with 10X Greater Positioning Area March 31st, 2015

New Applications Brochure on Complex Motion Control Systems for Scientific Research March 31st, 2015

'Atomic chicken-wire' is key to faster DNA sequencing March 30th, 2015

Nanobiotechnology

3-D neural structure guided with biocompatible nanofiber scaffolds and hydrogels April 1st, 2015

From tobacco to cyberwood March 31st, 2015

Wrapping carbon nanotubes in polymers enhances their performance: Scientists at Japan's Kyushu University say polymer-wrapped carbon nanotubes hold much promise in biotechnology and energy applications March 30th, 2015

'Atomic chicken-wire' is key to faster DNA sequencing March 30th, 2015

Research partnerships

Rutgers, NIST physicists report technology with potential for sub-micron optical switches March 31st, 2015

Prototype 'nanoneedles' generate new blood vessels in mice: Scientists have developed tiny 'nanoneedles' that have successfully prompted parts of the body to generate new blood vessels, in a trial in mice March 31st, 2015

'Atomic chicken-wire' is key to faster DNA sequencing March 30th, 2015

SUNY Poly & M+W Make Major Announcement: Major Expansion To Include M+W Owned Gehrlicher Solar America Corporation That Will Create up to 400 Jobs to Develop Solar Power Plants at SUNY Poly Sites Across New York State March 26th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE