Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Taiwan Scientists Advance Technology Used for Quantitative Measurement of Nano-/microparticle Uptake by Cells

Abstract:
A Taiwan research team has developed a new approach for investigating the amount of nano-/microparticles taken up by mammalian cells.

Taiwan Scientists Advance Technology Used for Quantitative Measurement of Nano-/microparticle Uptake by Cells

Taiwan | Posted on May 31st, 2010

This project was led by Dr. Chung-Hsuan Chen, Distinguished Research Fellow and Director of the Genomics Research Center (GRC) at Academia Sinica, and Dr. Wen-Ping Peng, a Jointly-appointed Assistant Professor of the GRC and the Department of Physics at National Dong Hwa University of Taiwan, in collaboration with Dr. Alice Yu, Distinguished Research Fellow and Deputy Director of the GRC. The research was published online in the leading international journal, Angewandte Chemie, on April 13, 2010.

Nano-/microparticles have been pursued by researchers in recent years as possible carriers for drug delivery. Therefore, effective quantitative measurement of the cellular uptake of nano-/microparticles is of great importance. Conventionally these tiny particles have been measured using certain types of mass spectrometry (an analytical technique for the determination of the elemental composition of a sample or molecule) including Inductively Coupled Plasma Atomic Emission Spectroscopy and Inductively Coupled Plasma Mass Spectrometry (ICP-MS). However, these methods of measurement are limited to elemental particles such as gold nanoparticles.

For this study, scientists used a different type of spectrometer called the Charge-Monitoring Mass Spectrometer (CMS), a device which was itself developed by a group at the GRC and the Institute of Atomic and Molecular Sciences at Academia Sinica in 2007 to measure single cancer cells at higher speeds. This time, researchers from the GRC Physical and Computational Genomics group used this recently-developed device to measure the masses of cells of nano-/microparticle, a novel approach for investigating the amount of nano-/microparticle uptake into mammalian cells.

The group's findings indicate that the CMS is an adequate tool for time-resolved measurements of nanogold uptake by cells. They also found that the CMS could measure particles over a larger size range from 30nm to 250 nm. In addition, as the CMS only takes two-steps to examine the nanogold and the ICP-MS takes five-steps, the CMS analysis is more time-efficient. Most importantly, however, the CMS will also be able to measure non-metal nano particles, including polymeric nanoparticles, carbon nanotubes, diamond nanoparticles, viruses, micelles and liposomes in addition to elemental particles.

"This research brings more efficiency to the measurement and detection of the mass changes of a cell as a result of malignancy or the uptake of nanoparticles. The CMS is proven to be useful in streamlining the determination the quantity of both gold and polystyrene nano-/microparticles taken up into cells. We expect that such device will be of importance in medical applications," noted the first author of the study, Huan-Chang Lin, a Ph.D. candidate in the Department of Bio-Industrial Mechatronics Engineering at National Taiwan University.

This research is co-funded by the National Science Council, Academia Sinica and the National Health Research Institute. The full list of authors is Huan-Chang Lin, Hsin-Hung Lin, Cai-Yu Kao, Alice L. Yu, Wen-Ping Peng and Chung-Hsuan Chen.

The full-text of the study was published under the title Quantitative Measurement of Nano-/Microparticle Endocytosis by Cell Mass Spectrometry, available at the Angewandte Chemie website at: www3.interscience.wiley.com/journal/123349954/abstract?CRETRY=1&SRETRY=0.

Angewandte Chemie is published by the German Chemical Society. In 2008 it had an impact factor of 10.879.

####

For more information, please click here

Contacts:
Media Contacts:
Dr. Chung-Hsuan Chen
Genomics Center, Academia Sinica
(Tel) +886-2-2787-1200

Dr. Wen-Ping Peng
Department of Physics
National Dong Hwa University
(Tel) +886-3-8633-733

Fang-Hsun Yeh
Public Relations Office, Central Office of Administration
Academia Sinica
(Tel) +886-2-2789-8824
(M) 0922-036-691


Mei-Hui Lin
Public Relations Office, Central Office of Administration
Academia Sinica
(Tel) +886-2-2789-8821
(M) 0921-845-234

Copyright © Academia Sinica

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Manchester scientists tie the tightest knot ever achieved January 13th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Nanoscale view of energy storage January 16th, 2017

Chemistry on the edge: Experiments at Berkeley Lab confirm that structural defects at the periphery are key in catalyst function January 13th, 2017

Recreating conditions inside stars with compact lasers: Scientists offer a new path to creating the extreme conditions found in stars, using ultra-short laser pulses irradiating nanowires January 12th, 2017

New laser based on unusual physics phenomenon could improve telecommunications, computing January 12th, 2017

Academic/Education

Oxford Nanoimaging report on how the Nanoimager, a desktop microscope delivering single molecule, super-resolution performance, is being applied at the MRC Centre for Molecular Bacteriology & Infection November 22nd, 2016

The University of Applied Sciences in Upper Austria uses Deben tensile stages as an integral part of their computed tomography research and testing facility October 18th, 2016

Enterprise In Space Partners with Sketchfab and 3D Hubs for NewSpace Education October 13th, 2016

New Agricultural Research Center Debuts at UCF October 12th, 2016

Nanomedicine

New active filaments mimic biology to transport nano-cargo: A new design for a fully biocompatible motility engine transports colloidal particles faster than diffusion with active filaments January 11th, 2017

Keystone Nano Announces FDA Approval Of Investigational New Drug Application For Ceramide NanoLiposome For The Improved Treatment Of Cancer January 10th, 2017

Captured on video: DNA nanotubes build a bridge between 2 molecular posts: Research may lead to new lines of direct communication with cells January 9th, 2017

Arrowhead Provides Response to New Minority Shareholder Announcement January 7th, 2017

Announcements

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Tools

Distinguishing truth under the surface: electrostatic or mechanic December 31st, 2016

Nanomechanics Inc. Continues Growth in Revenue and Market Penetration: Leading nanoindentation company reports continued growth in revenues and distribution channels on national and international scales December 27th, 2016

Nanometrics to Present at the 19th Annual Needham Growth Conference December 22nd, 2016

Safe and inexpensive hydrogen production as a future energy source: Osaka University researchers develop efficient 'green' hydrogen production system that operates at room temperature in air December 21st, 2016

Nanobiotechnology

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

New active filaments mimic biology to transport nano-cargo: A new design for a fully biocompatible motility engine transports colloidal particles faster than diffusion with active filaments January 11th, 2017

Keystone Nano Announces FDA Approval Of Investigational New Drug Application For Ceramide NanoLiposome For The Improved Treatment Of Cancer January 10th, 2017

Captured on video: DNA nanotubes build a bridge between 2 molecular posts: Research may lead to new lines of direct communication with cells January 9th, 2017

Research partnerships

Chemistry on the edge: Experiments at Berkeley Lab confirm that structural defects at the periphery are key in catalyst function January 13th, 2017

Recreating conditions inside stars with compact lasers: Scientists offer a new path to creating the extreme conditions found in stars, using ultra-short laser pulses irradiating nanowires January 12th, 2017

Zeroing in on the true nature of fluids within nanocapillaries: While exploring the behavior of fluids at the nanoscale, a group of researchers at the French National Center for Scientific Research discovered a peculiar state of fluid mixtures contained in microscopic channels January 11th, 2017

New active filaments mimic biology to transport nano-cargo: A new design for a fully biocompatible motility engine transports colloidal particles faster than diffusion with active filaments January 11th, 2017

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project