Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Taiwan Scientists Advance Technology Used for Quantitative Measurement of Nano-/microparticle Uptake by Cells

Abstract:
A Taiwan research team has developed a new approach for investigating the amount of nano-/microparticles taken up by mammalian cells.

Taiwan Scientists Advance Technology Used for Quantitative Measurement of Nano-/microparticle Uptake by Cells

Taiwan | Posted on May 31st, 2010

This project was led by Dr. Chung-Hsuan Chen, Distinguished Research Fellow and Director of the Genomics Research Center (GRC) at Academia Sinica, and Dr. Wen-Ping Peng, a Jointly-appointed Assistant Professor of the GRC and the Department of Physics at National Dong Hwa University of Taiwan, in collaboration with Dr. Alice Yu, Distinguished Research Fellow and Deputy Director of the GRC. The research was published online in the leading international journal, Angewandte Chemie, on April 13, 2010.

Nano-/microparticles have been pursued by researchers in recent years as possible carriers for drug delivery. Therefore, effective quantitative measurement of the cellular uptake of nano-/microparticles is of great importance. Conventionally these tiny particles have been measured using certain types of mass spectrometry (an analytical technique for the determination of the elemental composition of a sample or molecule) including Inductively Coupled Plasma Atomic Emission Spectroscopy and Inductively Coupled Plasma Mass Spectrometry (ICP-MS). However, these methods of measurement are limited to elemental particles such as gold nanoparticles.

For this study, scientists used a different type of spectrometer called the Charge-Monitoring Mass Spectrometer (CMS), a device which was itself developed by a group at the GRC and the Institute of Atomic and Molecular Sciences at Academia Sinica in 2007 to measure single cancer cells at higher speeds. This time, researchers from the GRC Physical and Computational Genomics group used this recently-developed device to measure the masses of cells of nano-/microparticle, a novel approach for investigating the amount of nano-/microparticle uptake into mammalian cells.

The group's findings indicate that the CMS is an adequate tool for time-resolved measurements of nanogold uptake by cells. They also found that the CMS could measure particles over a larger size range from 30nm to 250 nm. In addition, as the CMS only takes two-steps to examine the nanogold and the ICP-MS takes five-steps, the CMS analysis is more time-efficient. Most importantly, however, the CMS will also be able to measure non-metal nano particles, including polymeric nanoparticles, carbon nanotubes, diamond nanoparticles, viruses, micelles and liposomes in addition to elemental particles.

"This research brings more efficiency to the measurement and detection of the mass changes of a cell as a result of malignancy or the uptake of nanoparticles. The CMS is proven to be useful in streamlining the determination the quantity of both gold and polystyrene nano-/microparticles taken up into cells. We expect that such device will be of importance in medical applications," noted the first author of the study, Huan-Chang Lin, a Ph.D. candidate in the Department of Bio-Industrial Mechatronics Engineering at National Taiwan University.

This research is co-funded by the National Science Council, Academia Sinica and the National Health Research Institute. The full list of authors is Huan-Chang Lin, Hsin-Hung Lin, Cai-Yu Kao, Alice L. Yu, Wen-Ping Peng and Chung-Hsuan Chen.

The full-text of the study was published under the title Quantitative Measurement of Nano-/Microparticle Endocytosis by Cell Mass Spectrometry, available at the Angewandte Chemie website at: www3.interscience.wiley.com/journal/123349954/abstract?CRETRY=1&SRETRY=0.

Angewandte Chemie is published by the German Chemical Society. In 2008 it had an impact factor of 10.879.

####

For more information, please click here

Contacts:
Media Contacts:
Dr. Chung-Hsuan Chen
Genomics Center, Academia Sinica
(Tel) +886-2-2787-1200

Dr. Wen-Ping Peng
Department of Physics
National Dong Hwa University
(Tel) +886-3-8633-733

Fang-Hsun Yeh
Public Relations Office, Central Office of Administration
Academia Sinica
(Tel) +886-2-2789-8824
(M) 0922-036-691


Mei-Hui Lin
Public Relations Office, Central Office of Administration
Academia Sinica
(Tel) +886-2-2789-8821
(M) 0921-845-234

Copyright © Academia Sinica

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New technology can detect hundreds of proteins in a single sample: Improvement of barcoding technique offers cost-effective alternative to current technology August 13th, 2018

Amazingly 'green' synthesis method for high-tech dyes: Dyes that are also of great interest for organic electronics have recently been prepared and crystallised at TU Wien. All that is required is just water, albeit under highly unusual conditions. August 10th, 2018

Biomimetic micro/nanoscale fiber reinforced composites August 10th, 2018

Breaking down the Wiedemann-Franz law: In a study exploring the coupling between heat and particle currents in a gas of strongly interacting atoms, physicists at ETH Zurich find puzzling behaviours August 10th, 2018

Govt.-Legislation/Regulation/Funding/Policy

New technology can detect hundreds of proteins in a single sample: Improvement of barcoding technique offers cost-effective alternative to current technology August 13th, 2018

Breaking down the Wiedemann-Franz law: In a study exploring the coupling between heat and particle currents in a gas of strongly interacting atoms, physicists at ETH Zurich find puzzling behaviours August 10th, 2018

Yale-NUS scientist and collaborators solve open theoretical problem on electron interactions August 10th, 2018

Scientists squeeze nanocrystals in a liquid droplet into a solid-like state and back again: Simple chemical technique transforms crystal mixture where 2 liquids meet August 9th, 2018

Academic/Education

The Institute of Applied Physics at the University of Tsukuba near Tokyo in Japan uses Deben's ARM2 detector to better understand catalytic reaction mechanisms June 27th, 2018

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

SUNY Poly Professor Eric Lifshin Selected for ‘Fellow of the Microanalysis Society’ Position for Significant Contributions to Microanalysis June 13th, 2018

Grand Opening of UC Irvine Materials Research Institute (IMRI) to Spotlight JEOL Center for Nanoscale Solutions: Renowned Materials Scientists to Present at the 1st International Symposium on Advanced Microscopy and Spectroscopy (ISAMS) April 18th, 2018

Nanomedicine

New technology can detect hundreds of proteins in a single sample: Improvement of barcoding technique offers cost-effective alternative to current technology August 13th, 2018

Scientists squeeze nanocrystals in a liquid droplet into a solid-like state and back again: Simple chemical technique transforms crystal mixture where 2 liquids meet August 9th, 2018

Nanoscience and the future of healthcare kick off first day of ACS national meeting in Boston: Presidential events highlight safety, diversity and groundbreaking research August 2nd, 2018

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

Announcements

New technology can detect hundreds of proteins in a single sample: Improvement of barcoding technique offers cost-effective alternative to current technology August 13th, 2018

Superconductivity above 10 K discovered in a novel quasi-one-dimensional compound K2Mo3As3 August 10th, 2018

Biomimetic micro/nanoscale fiber reinforced composites August 10th, 2018

Breaking down the Wiedemann-Franz law: In a study exploring the coupling between heat and particle currents in a gas of strongly interacting atoms, physicists at ETH Zurich find puzzling behaviours August 10th, 2018

Tools

Nanometrics Delivers 100th: Atlas III System for Advanced Process Control Metrology Atlas III: Systems are qualified and in production for advanced devices in DRAM, 3D-NAND and Foundry/Logic August 2nd, 2018

Picosun’s ALD solutions make quality watches tick July 26th, 2018

Nanometrics Announces Participation in Upcoming Investor Conferences July 25th, 2018

Researchers use nanotechnology to improve the accuracy of measuring devices July 24th, 2018

Nanobiotechnology

New technology can detect hundreds of proteins in a single sample: Improvement of barcoding technique offers cost-effective alternative to current technology August 13th, 2018

Scientists squeeze nanocrystals in a liquid droplet into a solid-like state and back again: Simple chemical technique transforms crystal mixture where 2 liquids meet August 9th, 2018

Nanoscience and the future of healthcare kick off first day of ACS national meeting in Boston: Presidential events highlight safety, diversity and groundbreaking research August 2nd, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Research partnerships

Breaking down the Wiedemann-Franz law: In a study exploring the coupling between heat and particle currents in a gas of strongly interacting atoms, physicists at ETH Zurich find puzzling behaviours August 10th, 2018

Yale-NUS scientist and collaborators solve open theoretical problem on electron interactions August 10th, 2018

Scientists squeeze nanocrystals in a liquid droplet into a solid-like state and back again: Simple chemical technique transforms crystal mixture where 2 liquids meet August 9th, 2018

Quantum chains in graphene nanoribbons: Breakthrough in nanoresearch August 9th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project