Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Taiwan Scientists Advance Technology Used for Quantitative Measurement of Nano-/microparticle Uptake by Cells

Abstract:
A Taiwan research team has developed a new approach for investigating the amount of nano-/microparticles taken up by mammalian cells.

Taiwan Scientists Advance Technology Used for Quantitative Measurement of Nano-/microparticle Uptake by Cells

Taiwan | Posted on May 31st, 2010

This project was led by Dr. Chung-Hsuan Chen, Distinguished Research Fellow and Director of the Genomics Research Center (GRC) at Academia Sinica, and Dr. Wen-Ping Peng, a Jointly-appointed Assistant Professor of the GRC and the Department of Physics at National Dong Hwa University of Taiwan, in collaboration with Dr. Alice Yu, Distinguished Research Fellow and Deputy Director of the GRC. The research was published online in the leading international journal, Angewandte Chemie, on April 13, 2010.

Nano-/microparticles have been pursued by researchers in recent years as possible carriers for drug delivery. Therefore, effective quantitative measurement of the cellular uptake of nano-/microparticles is of great importance. Conventionally these tiny particles have been measured using certain types of mass spectrometry (an analytical technique for the determination of the elemental composition of a sample or molecule) including Inductively Coupled Plasma Atomic Emission Spectroscopy and Inductively Coupled Plasma Mass Spectrometry (ICP-MS). However, these methods of measurement are limited to elemental particles such as gold nanoparticles.

For this study, scientists used a different type of spectrometer called the Charge-Monitoring Mass Spectrometer (CMS), a device which was itself developed by a group at the GRC and the Institute of Atomic and Molecular Sciences at Academia Sinica in 2007 to measure single cancer cells at higher speeds. This time, researchers from the GRC Physical and Computational Genomics group used this recently-developed device to measure the masses of cells of nano-/microparticle, a novel approach for investigating the amount of nano-/microparticle uptake into mammalian cells.

The group's findings indicate that the CMS is an adequate tool for time-resolved measurements of nanogold uptake by cells. They also found that the CMS could measure particles over a larger size range from 30nm to 250 nm. In addition, as the CMS only takes two-steps to examine the nanogold and the ICP-MS takes five-steps, the CMS analysis is more time-efficient. Most importantly, however, the CMS will also be able to measure non-metal nano particles, including polymeric nanoparticles, carbon nanotubes, diamond nanoparticles, viruses, micelles and liposomes in addition to elemental particles.

"This research brings more efficiency to the measurement and detection of the mass changes of a cell as a result of malignancy or the uptake of nanoparticles. The CMS is proven to be useful in streamlining the determination the quantity of both gold and polystyrene nano-/microparticles taken up into cells. We expect that such device will be of importance in medical applications," noted the first author of the study, Huan-Chang Lin, a Ph.D. candidate in the Department of Bio-Industrial Mechatronics Engineering at National Taiwan University.

This research is co-funded by the National Science Council, Academia Sinica and the National Health Research Institute. The full list of authors is Huan-Chang Lin, Hsin-Hung Lin, Cai-Yu Kao, Alice L. Yu, Wen-Ping Peng and Chung-Hsuan Chen.

The full-text of the study was published under the title Quantitative Measurement of Nano-/Microparticle Endocytosis by Cell Mass Spectrometry, available at the Angewandte Chemie website at: www3.interscience.wiley.com/journal/123349954/abstract?CRETRY=1&SRETRY=0.

Angewandte Chemie is published by the German Chemical Society. In 2008 it had an impact factor of 10.879.

####

For more information, please click here

Contacts:
Media Contacts:
Dr. Chung-Hsuan Chen
Genomics Center, Academia Sinica
(Tel) +886-2-2787-1200

Dr. Wen-Ping Peng
Department of Physics
National Dong Hwa University
(Tel) +886-3-8633-733

Fang-Hsun Yeh
Public Relations Office, Central Office of Administration
Academia Sinica
(Tel) +886-2-2789-8824
(M) 0922-036-691


Mei-Hui Lin
Public Relations Office, Central Office of Administration
Academia Sinica
(Tel) +886-2-2789-8821
(M) 0921-845-234

Copyright © Academia Sinica

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Happily ever after: Scientists arrange protein-nanoparticle marriage: New biotech method could lead to development of HIV vaccine, targeted cancer treatment April 20th, 2015

Nondestructive 3-D Imaging of Biological Cells with Sound April 20th, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Yale-NUS, NUS and UT Austin researchers establish theoretical framework for graphene physics: Making strides towards using graphene to create new electronic devices April 20th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Happily ever after: Scientists arrange protein-nanoparticle marriage: New biotech method could lead to development of HIV vaccine, targeted cancer treatment April 20th, 2015

Engineer improves rechargeable batteries with MoS2 nano 'sandwich' April 18th, 2015

New Biological Nano-Fertilizers Presented in Iran as Appropriate Replacements for Chemical Fertilizers April 18th, 2015

Beyond the lithium ion -- a significant step toward a better performing battery April 18th, 2015

Academic/Education

JPK reports on the use of the NanoWizardŽ 3 AFM system at the Hebrew University of Jerusalem April 14th, 2015

UK National Graphene Institute Selects Bruker as Official Partner: World-Leading Graphene Research Facility Purchases Multiple Bruker AFMs April 7th, 2015

SUNY Poly CNSE and Title Sponsor SEFCU Name Capital Region Teams Advancing to the Final Round of the 2015 New York Business Plan Competition March 30th, 2015

LAMDAMAP 2015 hosted by the University March 26th, 2015

Nanomedicine

Happily ever after: Scientists arrange protein-nanoparticle marriage: New biotech method could lead to development of HIV vaccine, targeted cancer treatment April 20th, 2015

Optical resonance-based biosensors designed for medical applications April 18th, 2015

Nanocomposites Play Effective Role in Production of Smart Fibers April 18th, 2015

Novel nanoparticles could save soldiers' lives after explosions April 15th, 2015

Announcements

Happily ever after: Scientists arrange protein-nanoparticle marriage: New biotech method could lead to development of HIV vaccine, targeted cancer treatment April 20th, 2015

Nondestructive 3-D Imaging of Biological Cells with Sound April 20th, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Yale-NUS, NUS and UT Austin researchers establish theoretical framework for graphene physics: Making strides towards using graphene to create new electronic devices April 20th, 2015

Tools

Nondestructive 3-D Imaging of Biological Cells with Sound April 20th, 2015

Oxford Instruments commissions high field outsert magnet system for the National High Magnetic Field Laboratory 32 Tesla magnet program April 17th, 2015

Lanthanide-Organic Framework Nanothermometers Prepared by Spray-Drying April 16th, 2015

Combined effort for structural determination April 15th, 2015

Nanobiotechnology

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Protein Building Blocks for Nanosystems: Scientists develop method for producing bio-based materials with new properties April 17th, 2015

Study shows novel pattern of electrical charge movement through DNA April 14th, 2015

UAB researchers develop a harmless artificial virus for gene therapy April 8th, 2015

Research partnerships

Nondestructive 3-D Imaging of Biological Cells with Sound April 20th, 2015

Yale-NUS, NUS and UT Austin researchers establish theoretical framework for graphene physics: Making strides towards using graphene to create new electronic devices April 20th, 2015

Beyond the lithium ion -- a significant step toward a better performing battery April 18th, 2015

Light in a spin: Researchers demonstrate angular accelerating light April 15th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE