Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Quantum Future: GTRI Researchers are Designing and Testing Microfabricated Planar Ion Traps

Optical microscope image of an ion trap designed at GTRI. The dark rectangle is the loading slot that calcium atoms stream through before they are hit with a laser and trapped. Credit: Charlie Doret
Optical microscope image of an ion trap designed at GTRI. The dark rectangle is the loading slot that calcium atoms stream through before they are hit with a laser and trapped. Credit: Charlie Doret

Abstract:
Despite a steady improvement in the speed of conventional computers during the last few decades, certain types of problems remain computationally difficult to solve. Quantum computers hold the promise of offering a new route to solving some classes of these problems, such as breaking encryptions. The tremendous computing power of these devices stems from their use of quantum systems, called "qubits," which can exist in a "superposition" of two states at the same time - in stark contrast to the transistors in conventional computers that can only be in the state "0" or "1".

By Abby Vogel

Quantum Future: GTRI Researchers are Designing and Testing Microfabricated Planar Ion Traps

Atlanta, GA | Posted on May 27th, 2010

"Though a practical quantum computer may still be decades away, research being conducted today is laying the groundwork for such a device by bridging the vast gap between the theory and practice of quantum information processing," said Dick Slusher, a principal research scientist at the Georgia Tech Research Institute (GTRI) and director of the Georgia Tech Quantum Institute.

One path toward creating quantum computers is to use trapped ions as the qubits. However, it is currently difficult to scale up conventional ion traps into an array large enough to create a useful quantum computer.

At GTRI, researchers are designing, fabricating and testing planar ion traps that can be more readily combined into large, interconnected trap arrays. Details of the research effort, led by Slusher and GTRI senior research scientist Alexa Harter, were presented at the annual meeting of the American Physical Society's Division of Atomic Molecular and Optical Physics on May 26 and 27.

The presentations were made by GTRI postdoctoral fellow Charlie Doret, GTRI research scientist Arkadas Ozakin and Georgia Tech electrical and computer engineering graduate student Fayaz Shaikh. This research is funded by the Intelligence Advanced Research Projects Activity (IARPA) and the Defense Advanced Research Projects Agency (DARPA) through contracts with the Army Research Office.

GTRI's microfabricated planar ion traps employ a combination of radio-frequency signals and static voltages applied to aluminum electrodes that are layered on silicon wafers.

"These planar trap geometries are advantageous because they are scalable to large systems of ions and also offer improved laser access compared to currently available traps," said Doret.

Lasers are applied to the ions to induce "entanglement" - a quantum mechanical property whereby the states involved cannot be completely described independently. Using systems of trapped ions, researchers have measured entanglement clearly and can preserve it for extended periods of time. To date, however, the largest number of entangled particles ever achieved in a quantum computer is eight calcium ions. At least thirty ions are required to perform calculations that cannot be realized on a classical computer, so a major challenge for the future is to increase the number of trapped ions that can interact.

The GTRI team has used state-of-the-art computer simulations of the electromagnetic trapping fields and the trapped ion motion to design versatile traps capable of holding many ions. Trap designs were improved using genetic algorithms that fed back to the shapes and spacing of trap electrodes to optimize trap depth and minimize heating when ions were transported between trapping zones.

Prototypes of the designs were fabricated with the help of Kevin Martin, a principal research scientist in the Georgia Tech Nanotechnology Research Center. The research team then tested the prototypes in GTRI's ion trapping laboratory, where calcium ions were first trapped in October 2009 using devices designed and fabricated at Georgia Tech.

Experimental data on trap loading efficiency, ion lifetime and ion shuttling efficiency were used to validate the designs and provide feedback for additional improvements.

The GTRI team is working with researchers at Duke University to integrate optics directly into the ion traps, while researchers at the Massachusetts Institute of Technology are testing the devices in a cryogenic environment.

In collaboration with the University of Maryland, GTRI researchers are also investigating the use of an array of trapped ions and/or ultra-cold atoms trapped in optical lattices for applications in quantum simulation.

"We still have much to learn about individual quantum systems, how to connect them, how to control them, how to measure them and how to fix the inevitable errors," added Slusher.

Future work at GTRI will include testing new trap designs, such as linear traps optimized for holding long ion chains.

"This field requires a multidisciplinary effort and Georgia Tech has the synergy and strengths in the technology and science areas and the fabrication facilities to make real progress," added Slusher.

This material is based upon work supported by the Intelligence Advanced Research Projects Activity (IARPA) Scaled Multiplexed Ion Trap project under U.S. Army Award No. W911NF-08-1-0315, and the Defense Advanced Research Projects Agency (DARPA) Optical Lattice Emulator program under U.S. Army Award No. W911NF-07-1-0576. Any opinions, findings, conclusions or recommendations expressed in this article are those of the researchers and do not necessarily reflect the views of the U.S. Army.

####

For more information, please click here

Contacts:
Media Relations Contacts:
Abby Vogel

404-385-3364

John Toon

404-894-6986

Kirk Englehardt

404-407-7280

Copyright © Georgia Tech Research Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanoparticles used to breach mucus barrier in lungs: Proof-of-concept study conducted in mice a key step toward better treatments for lung diseases August 3rd, 2015

Promising Step Taken in Iran towards Treatment of Spinal Cord Injury August 3rd, 2015

Diagnosis of Salmonella Bacterium-Caused Food Poisoning by Biosensors August 3rd, 2015

Thin films offer promise for ferroelectric devices: Researchers at Tokyo Institute of Technology demystify the ferroelectric properties observed in hafnium-oxide-based thin films, revealing a potentially useful device material August 3rd, 2015

Govt.-Legislation/Regulation/Funding/Policy

Nanoparticles used to breach mucus barrier in lungs: Proof-of-concept study conducted in mice a key step toward better treatments for lung diseases August 3rd, 2015

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

Kalam: versatility personified August 1st, 2015

Heating and cooling with light leads to ultrafast DNA diagnostics July 31st, 2015

Possible Futures

Nanofiltration Membrane Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Nanozirconia Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Self-Healing Nano Anti-rust Coatings Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Nano Spray Instrument Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Academic/Education

Pakistani Students Who Survived Terror Attack to Attend Weeklong “NanoDiscovery Institute” at SUNY Poly CNSE in Albany July 29th, 2015

Deben reports on the use of their CT500 in the X-ray microtomography laboratory at La Trobe University, Melbourne, Australia July 22nd, 2015

JPK reports on the use of SPM in the Messersmith Group at UC Berkeley looking at biologically inspired polymer adhesives. July 21st, 2015

Renishaw adds Raman analysis to Scanning Electron Microscopy at the University of Sydney, Australia July 9th, 2015

Quantum Computing

Quantum networks: Back and forth are not equal distances! July 28th, 2015

The quantum middle man July 2nd, 2015

Freezing single atoms to absolute zero with microwaves brings quantum technology closer: Atoms frozen to absolute zero using microwaves July 2nd, 2015

Producing spin-entangled electrons July 2nd, 2015

Announcements

Nanoparticles used to breach mucus barrier in lungs: Proof-of-concept study conducted in mice a key step toward better treatments for lung diseases August 3rd, 2015

Promising Step Taken in Iran towards Treatment of Spinal Cord Injury August 3rd, 2015

Diagnosis of Salmonella Bacterium-Caused Food Poisoning by Biosensors August 3rd, 2015

Thin films offer promise for ferroelectric devices: Researchers at Tokyo Institute of Technology demystify the ferroelectric properties observed in hafnium-oxide-based thin films, revealing a potentially useful device material August 3rd, 2015

Research partnerships

Newly-Developed Polymers Control Size of Nanoparticles during Production Process July 30th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

Stretching the limits on conducting wires July 25th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project