Home > Press > Cheaper solar energy due to silicon nanosponges?
![]() |
solar cell production (image: Signet Solar GmbH) |
Abstract:
In principle, solar energy is unlimitedly available. If it is to get rid of its status as the most expensive and highly subsidized kind of renewable energy, researchers have to bring about basic innovations. Expectations are particularly high with regard to the use of nano materials. The research center Forschungszentrum Dresden-Rossendorf (FZD) coordinates an international team of researchers from science and industry investigating such third-generation solar cells.
By Dr. Karl-Heinz Heinig
How can the efficiency of solar cells be improved considerably without increasing the costs of production? This is a crucial issue for solar cells to be competitive. Scientists of the research center Forschungszentrum Dresden-Rossendorf found a way to replace the amorphous or nanocrystalline silicon in thin film solar cells, which have a low efficiency, by a nanosponge made of silicon. It promises to be a good light absorber while improving the electrical yield of the solar cells. The silicon nanosponges are embedded in glass, thus they are electrically passivated and protected from the environment.
German-Turkish workshop in Dresden from May 26-28
Dr. Karl-Heinz Heinig of the Institute of Ion Beam Physics and Materials Research at the FZD coordinates an international research project which is funded by the German Federal Ministry of Education and Research and was started in April this year. Partners from industry are the solar cell producers SignetSolar from the German region of Saxony and the Turkish Nurol Technologies enterprises. The two Turkish universities Middle East Technical University and Bilkent University in Ankara are cooperating in the project, which is focused on the investigation of fundamental problems. All project partners are coming together at the kickoff meeting of the project, which takes place at the FZD from May 26-28, 2010. The aim is to analyze current production methods and knowledge with regard to solar cells and to come up with a first work package for the next three years. The possibilities for industrial implementation of the research results will be discussed at the solar cell production line of SignetSolar company.
The researchers involved in the project aim at finding ways to fabricate silicon nanosponges, investigating their photoelectric characteristics as well as applying the nanosponges for solar cell production. The possibility to increase the efficiency of solar cells, which was discovered at the FZD, can be easily adapted to existing production lines, affording only little changes and a low increase in production costs.
####
For more information, please click here
Contacts:
Dr. Karl-Heinz Heinig
Institute of Ion Beam Physics and Materials Research at the FZD
Tel.: +49 (0)351 260 - 3288
Media contact:
Dr. Christine Bohnet
Head of public relations
Forschungszentrum Dresden-Rossendorf (FZD)
Bautzner Landstr. 400 | 01328 Dresden
Tel.: +49 (0)351 260 - 2450 or 0160 969 288 56
Fax: +49 (0)351 260 - 2700
Copyright © Forschungszentrum Dresden Rossendorf
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Engineering piezoelectricity and strain sensitivity in CdS to promote piezocatalytic hydrogen evolution May 13th, 2022
New nanomechanical oscillators with record-low loss May 13th, 2022
Small microring array enables large complex-valued matrix multiplication May 13th, 2022
Thin films
Thin-film, high-frequency antenna array offers new flexibility for wireless communications November 5th, 2021
Leibniz Prize winner Professor Dr. Oliver G. Schmidt moves to Chemnitz University of Technology: President Professor Dr. Gerd Strohmeier refers to an 'absolute top transfer' September 10th, 2021
Possible Futures
Engineering piezoelectricity and strain sensitivity in CdS to promote piezocatalytic hydrogen evolution May 13th, 2022
New nanomechanical oscillators with record-low loss May 13th, 2022
Small microring array enables large complex-valued matrix multiplication May 13th, 2022
Announcements
Engineering piezoelectricity and strain sensitivity in CdS to promote piezocatalytic hydrogen evolution May 13th, 2022
New nanomechanical oscillators with record-low loss May 13th, 2022
Small microring array enables large complex-valued matrix multiplication May 13th, 2022
Energy
Engineering piezoelectricity and strain sensitivity in CdS to promote piezocatalytic hydrogen evolution May 13th, 2022
USTC found a pathway to high-quality ZnSe quantum wires April 8th, 2022
Events/Classes
Could quantum technology be New Mexico’s next economic boon? Quantum New Mexico Coalition aims to establish state as national hub April 1st, 2022
Arrowhead Pharmaceuticals to Participate in Upcoming September 2021 Conferences September 1st, 2021
Solar/Photovoltaic
USTC found a pathway to high-quality ZnSe quantum wires April 8th, 2022
Graphene crystals grow better under copper cover April 1st, 2022
Peering into precise ultrafast dynamics in matter March 25th, 2022
“Workhorse” of photovoltaics combined with perovskite in tandem for the first time February 25th, 2022
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |