Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Ultra-secure quantum communications

Secure link ... Rob Malaney
Secure link ... Rob Malaney

Abstract:
The risk of sensitive information falling into the wrong hands could be eliminated by a new quantum communication process that delivers unprecedented security.

Ultra-secure quantum communications

New South Wales | Posted on May 24th, 2010

UNSW telecommunications researcher Robert Malaney has developed the process, called "unconditional location verification", which ensures that even if an encryption password has fallen into the wrong hands, a secure message can only be seen by a recipient at an agreed geographic point.

Associate Professor Malaney, of the UNSW School of Electrical Engineering and Telecommunications, said quantum communications already allow unbreakable encryption but security can now be further enhanced using unconditional location verification.

"This takes communications security to a level that hasn't previously been available," he said.

"With this process you can send data to a person at a particular location. If they are not at that location the process would detect that and you can stop the communication.

"This is a new application that you can deploy on current and emerging quantum networks. It opens up a range of new information security applications for both fibre and wireless communication networks.

"There would be many industries and organisations, banks for example, that would be interested in delivering information content in the sure knowledge a recipient is at an agreed-upon location."

The concept, which also has potential applications in the intelligence community, e-commerce and digital content distribution, is reported in the April edition of the American Physical Society journal Physical Review A.

The system works by sending paired "qubits" - particles, such as photons, which have been manipulated to contain specific quantum information - over a fibre optic or wireless network to a recipient. The recipient must send a return message, using information from the decoded qubits, to a number of reference points to open up a secure channel. Because quantum networks operate at the speed of light and quantum information cannot be copied, the time to return the message can be accurately measured, ensuring that it has come from only one possible place.

####

For more information, please click here

Contacts:
Media Contact:
Associate Professor Rob Malaney
02 9385 6580


UNSW Media Office:
Peter Trute
02 9385 1933

Copyright © University of New South Wales

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Thanks for the memory: NIST takes a deep look at memristors January 20th, 2018

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Possible Futures

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Nanowrinkles could save billions in shipping and aquaculture Surfaces inspired by carnivorous plants delay degradation by marine fouling January 17th, 2018

Academic/Education

Lule University of Technology is using the Deben CT5000TEC stage to perform x-ray microtomography experiments with the ZEISS Xradia 510 Versa to understand deformation and strain inside inhomogeneous materials November 7th, 2017

Park Systems Announces the Grand Opening of the Park NanoScience Center at SUNY Polytechnic Institute November 3rd, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Announcements

Thanks for the memory: NIST takes a deep look at memristors January 20th, 2018

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Military

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

New exotic phenomena seen in photonic crystals: Researchers observe, for the first time, topological effects unique to an open system January 12th, 2018

Nanotube fibers in a jiffy: Rice University lab makes short nanotube samples by hand to dramatically cut production time January 11th, 2018

Ultrafine fibers have exceptional strength: New technique developed at MIT could produce strong, resilient nanofibers for many applications January 5th, 2018

Industrial

STMicroelectronics Selects GLOBALFOUNDRIES 22FDX to Extend Its FD-SOI Platform and Technology Leadership : GFs FDX technology will enable ST to deliver high-performance, low-power products for next-generation consumer and industrial applications January 9th, 2018

A new product to help combat mouldy walls, thanks to technology developed at the ICN2 December 14th, 2017

Silicon Sense first to achieve EPA approval to import detonation nanodiamonds to US: Nanodiamond additives can significantly improve the performance of metal finishing, polymer thermal and mechanical compounds, polymer coatings, CMP polishing and a range of other applications November 29th, 2017

A new way to mix oil and water: Condensation-based method developed at MIT could create stable nanoscale emulsions November 8th, 2017

Quantum nanoscience

New oxide and semiconductor combination builds new device potential: Researchers integrated oxide two-dimensional electron gases with gallium arsenide and paved the way toward new opto-electrical devices January 10th, 2018

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

Enhancing the quantum sensing capabilities of diamond: Shooting electrons at diamonds can introduce quantum sensors into them November 24th, 2017

Quantum optics allows us to abandon expensive lasers in spectroscopy: Lomonosov Moscow State University scientists have invented a new method of spectroscopy November 21st, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project