Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Ultra-secure quantum communications

Secure link ... Rob Malaney
Secure link ... Rob Malaney

Abstract:
The risk of sensitive information falling into the wrong hands could be eliminated by a new quantum communication process that delivers unprecedented security.

Ultra-secure quantum communications

New South Wales | Posted on May 24th, 2010

UNSW telecommunications researcher Robert Malaney has developed the process, called "unconditional location verification", which ensures that even if an encryption password has fallen into the wrong hands, a secure message can only be seen by a recipient at an agreed geographic point.

Associate Professor Malaney, of the UNSW School of Electrical Engineering and Telecommunications, said quantum communications already allow unbreakable encryption but security can now be further enhanced using unconditional location verification.

"This takes communications security to a level that hasn't previously been available," he said.

"With this process you can send data to a person at a particular location. If they are not at that location the process would detect that and you can stop the communication.

"This is a new application that you can deploy on current and emerging quantum networks. It opens up a range of new information security applications for both fibre and wireless communication networks.

"There would be many industries and organisations, banks for example, that would be interested in delivering information content in the sure knowledge a recipient is at an agreed-upon location."

The concept, which also has potential applications in the intelligence community, e-commerce and digital content distribution, is reported in the April edition of the American Physical Society journal Physical Review A.

The system works by sending paired "qubits" - particles, such as photons, which have been manipulated to contain specific quantum information - over a fibre optic or wireless network to a recipient. The recipient must send a return message, using information from the decoded qubits, to a number of reference points to open up a secure channel. Because quantum networks operate at the speed of light and quantum information cannot be copied, the time to return the message can be accurately measured, ensuring that it has come from only one possible place.

####

For more information, please click here

Contacts:
Media Contact:
Associate Professor Rob Malaney
02 9385 6580


UNSW Media Office:
Peter Trute
02 9385 1933

Copyright © University of New South Wales

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Pixel-array quantum cascade detector paves the way for portable thermal imaging devices: Research team from TU-Wien Center for Micro- and Nanostructures have developed a new 'cooler' sensing instrument thereby increasing energy-efficiency and enhancing mobility for diagnostic tes July 28th, 2016

Dirty to drinkable: Engineers develop novel hybrid nanomaterials to transform water July 28th, 2016

Thomas Swan and NGI announce unique partnership July 28th, 2016

Penn team uses nanoparticles to break up plaque and prevent cavities July 28th, 2016

Possible Futures

Pixel-array quantum cascade detector paves the way for portable thermal imaging devices: Research team from TU-Wien Center for Micro- and Nanostructures have developed a new 'cooler' sensing instrument thereby increasing energy-efficiency and enhancing mobility for diagnostic tes July 28th, 2016

Dirty to drinkable: Engineers develop novel hybrid nanomaterials to transform water July 28th, 2016

Penn team uses nanoparticles to break up plaque and prevent cavities July 28th, 2016

Beating the heat a challenge at the nanoscale: Rice University scientists detect thermal boundary that hinders ultracold experiments July 28th, 2016

Academic/Education

Thomas Swan and NGI announce unique partnership July 28th, 2016

The NanoWizard® AFM from JPK is applied for interdisciplinary research at the University of South Australia for applications including smart wound healing and how plants can protect themselves from toxins July 26th, 2016

News from Quorum: The College of New Jersey use the Quorum Cryo-SEM preparation system in a project to study ice crystals in high altitude clouds July 19th, 2016

Leti and Korea Institute of Science and Technology to Explore Collaboration on Advanced Technologies for Digital Era July 14th, 2016

Announcements

Pixel-array quantum cascade detector paves the way for portable thermal imaging devices: Research team from TU-Wien Center for Micro- and Nanostructures have developed a new 'cooler' sensing instrument thereby increasing energy-efficiency and enhancing mobility for diagnostic tes July 28th, 2016

Dirty to drinkable: Engineers develop novel hybrid nanomaterials to transform water July 28th, 2016

Thomas Swan and NGI announce unique partnership July 28th, 2016

Penn team uses nanoparticles to break up plaque and prevent cavities July 28th, 2016

Military

Beating the heat a challenge at the nanoscale: Rice University scientists detect thermal boundary that hinders ultracold experiments July 28th, 2016

Ultrasensitive sensor using N-doped graphene July 26th, 2016

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Industrial

Dirty to drinkable: Engineers develop novel hybrid nanomaterials to transform water July 28th, 2016

Scientists move 1 step closer to creating an invisibility cloak July 15th, 2016

Yale researchers’ technology turns wasted heat into power June 27th, 2016

Industrial Nanotech, Inc. Signs Agreement With and Receives First Purchase Order from Major New Customer in China June 6th, 2016

Quantum nanoscience

Quantum drag:University of Iowa physicist says current in one iron magnetic sheet can create quantized spin waves in another, separate sheet July 22nd, 2016

A new spin on reality July 15th, 2016

Physicists couple distant nuclear spins using a single electron: For the first time, researchers at the University of Basel have coupled the nuclear spins of distant atoms using just a single electron July 12th, 2016

Quantum technologies to revolutionize 21st century: Nobel Laureates to discuss impacts at 66th Lindau Meeting July 5th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic