Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Brookhaven Lab Chemists Receive Patents for Fuel-Cell Catalysts

(From left) Brookhaven Lab chemists Kotaro Sasaki, Miomir Branko Vukmirovic, and Radoslav Adzic work on developing catalysts for fuel cells.
(From left) Brookhaven Lab chemists Kotaro Sasaki, Miomir Branko Vukmirovic, and Radoslav Adzic work on developing catalysts for fuel cells.

Abstract:
New catalysts reduce costly platinum use and increase its effectiveness in fuel cells

Brookhaven Lab Chemists Receive Patents for Fuel-Cell Catalysts

Upton, NY | Posted on May 21st, 2010

Chemists at the U.S. Department of Energy's Brookhaven National Laboratory have received three patents for developing catalysts to accelerate chemical reactions in fuel cells. The newly patented catalysts, as well as a method for making a particular type of catalyst with a thin layer of platinum, could greatly reduce the cost and increase the use of fuel cells in electric vehicles. The catalysts and the technique are available for licensing.

Platinum is the most efficient catalyst for fuel cells. However, the platinum-based catalysts are expensive, unstable, and have low durability. The newly patented catalysts have high activity and stability, while containing much less platinum than the amount used in current fuel cells, so their cost is reduced.

"Fuel cells are expected to become a major source of clean energy that can impact both transportation and stationary power sectors," said Radoslav Adzic, the principal researcher in all three patents. "They have several advantages for automotive applications and can be used extensively in electric cars if the technology can be made to work efficiently and economically. Developing these electrocatalysts is a big step in that direction."

Several types of renewable fuel - such as hydrogen, ethanol or methanol - may be used in fuel cells. A hydrogen fuel cell, for example, converts hydrogen and oxygen into water, and, in the process, produces electricity. Hydrogen is oxidized by separating into negatively charged electrons and positively charged ions with the help of a catalyst at the fuel cell's negative pole, the anode. Electrons then travel to the positive pole, the cathode, creating electricity with their movement. At the cathode, with the aid of a catalyst, oxygen gains electrons, resulting in oxygen reduction, and combines with hydrogen ions forming water, the only byproduct of a hydrogen/oxygen fuel cell.

Two of the Brookhaven chemists' patents were awarded for catalysts that speed up oxygen reduction. One is composed of a thin layer of platinum on palladium nanoparticles, which is more efficient than current catalysts. The other includes metal oxides, such as niobium oxide and ruthenium oxide, with a thin layer of platinum. The patent also covers a unique method for depositing a thin layer of platinum on the metal-oxide catalysts.

Compared to the patented platinum-palladium catalyst, the metal oxides combined with platinum are more stable and cost-effective, although the catalytic efficiency is not as high. Thus, the patented catalysts are complementary and can be tailored for various applications.

The scientists also received a patent for adding gold clusters to platinum-based catalysts. In the reactions during the stop-and-go driving of an electric car, platinum dissolves, which reduces its efficiency as a catalyst. But the researchers have overcome this problem by adding a very small amount of gold to the platinum-based catalyst. With the addition of gold, the platinum was kept intact during an accelerated stability test, which mimicked the stop-and-go conditions of an electric car. The gold clusters protected the platinum from being oxidized, which stabilized the platinum, making possible improved platinum-based catalysts.

U.S. patent 7,691,780 B2 for the development of platinum-palladium catalysts, was issued to Brookhaven Lab's Adzic and Miomir Branko Vukmirovic, along with Junliang Zhang and Yibo Mo, formerly of Brookhaven. Adzic, Vukmirovic and Kotaro Sasaki of Brookhaven Lab received title to U.S. patent 7,704,918 for metal oxide-platinum catalysts and their unique method of making them. Adzic and Zhang received U.S. patent 7,704,919 for adding gold clusters to platinum-based electrocatalysts.

The Department of Energy's Office of Science and its Office of Energy Efficiency and Renewable Energy funded the research that led to these patented technologies. For information about licensing them, contact Kimberley Elcess at 631 344-4151, or

####

About Brookhaven National Laboratory
One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry, and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation of the State University of New York, for and on behalf of Stony Brook University, the largest academic user of Laboratory facilities; and Battelle Memorial Institute, a nonprofit, applied science and technology organization. Visit Brookhaven Lab's electronic newsroom for links, news archives, graphics, and more at www.bnl.gov/newsroom, or follow Brookhaven Lab on Twitter at twitter.com/BrookhavenLab

For more information, please click here

Contacts:
(631)344-2347

Copyright © Brookhaven National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Conductive Inks: booming to $2.8 billion by 2024 April 17th, 2014

High-temperature plasmonics eyed for solar, computer innovation April 17th, 2014

INSCX™ exchange to present Exchange trade reporting mechanism for engineered nanomaterials (NMs) to UK regulation agencies, insurers and upstream/downstream users April 17th, 2014

Transparent Conductive Films and Sensors Are Hot Segments in Printed Electronics: Start-ups in these fields show above-average momentum, while companies working on emissive displays such as OLED are fading, Lux Research says April 17th, 2014

Harris & Harris Group Continues Its Blog Series to Highlight Most Impactful Portfolio Companies With Champions Oncology, Inc. April 17th, 2014

Chemistry

Thinnest feasible membrane produced April 17th, 2014

Targeting cancer with a triple threat: MIT chemists design nanoparticles that can deliver three cancer drugs at a time April 15th, 2014

Thin films

Transparent Conductive Films and Sensors Are Hot Segments in Printed Electronics: Start-ups in these fields show above-average momentum, while companies working on emissive displays such as OLED are fading, Lux Research says April 17th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Novel stapled peptide nanoparticle combination prevents RSV infection, study finds April 17th, 2014

INSCX™ exchange to present Exchange trade reporting mechanism for engineered nanomaterials (NMs) to UK regulation agencies, insurers and upstream/downstream users April 17th, 2014

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

'Life Redesigned: The Emergence of Synthetic Biology' Lecture at Brookhaven Lab on Wednesday, April 30: Biomedical Engineer James Collins to Speak for BSA Distinguished Lecture Series April 16th, 2014

Possible Futures

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Surface Characteristics Influence Cellular Growth on Semiconductor Material March 12th, 2014

The "Tipping Point" February 12th, 2014

Announcements

More effective kidney stone treatment, from the macroscopic to the nanoscale April 17th, 2014

High-temperature plasmonics eyed for solar, computer innovation April 17th, 2014

INSCX™ exchange to present Exchange trade reporting mechanism for engineered nanomaterials (NMs) to UK regulation agencies, insurers and upstream/downstream users April 17th, 2014

Transparent Conductive Films and Sensors Are Hot Segments in Printed Electronics: Start-ups in these fields show above-average momentum, while companies working on emissive displays such as OLED are fading, Lux Research says April 17th, 2014

Patents/IP/Tech Transfer/Licensing

Harris & Harris Group Notes Mersana's Collaboration Agreement With Subsidiary of Takeda Pharmaceutical Co. April 8th, 2014

Nanoparticles cause cancer cells to self-destruct April 3rd, 2014

A*STAR's Simtech collaboration agreements to accelerate the growth and development of the microfluidics industry April 1st, 2014

Dolomite releases novel droplet-on-demand sequencing and droplet generation microfluidic system April 1st, 2014

Automotive/Transportation

Relieving electric vehicle range anxiety with improved batteries: Lithium-sulfur batteries last longer with nanomaterial-packed cathode April 16th, 2014

Tiny particles could help verify goods: Chemical engineers hope smartphone-readable microparticles could crack down on counterfeiting April 15th, 2014

Nanotech Business Review 2013-2014 April 9th, 2014

Heat-conducting polymer cools hot electronic devices at 200 degrees C March 31st, 2014

Fuel Cells

University of Surrey collaborates with India and Tata Steel to revolutionise renewable energy March 26th, 2014

Novel membrane reveals water molecules will bounce off a liquid surface: Study may lead to more efficient water-desalination systems, fundamental understanding of fluid flow March 16th, 2014

Big Step for Next-Generation Fuel Cells and Electrolyzers: Researchers at Berkeley and Argonne National Labs Discover Highly Promising New Class of Nanocatalyst February 27th, 2014

Research and applications of iron oxide nanoparticles February 26th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE