Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Semiconductor manufacturing technique holds promise for solar energy

A flexible array of gallium arsenide solar cells. Gallium arsenide and other compound semiconductors are more efficient than the more commonly used silicon. Photo courtesy John Rogers
A flexible array of gallium arsenide solar cells. Gallium arsenide and other compound semiconductors are more efficient than the more commonly used silicon. Photo courtesy John Rogers

Abstract:
Thanks to a new semiconductor manufacturing method pioneered at the University of Illinois, the future of solar energy just got brighter

Semiconductor manufacturing technique holds promise for solar energy

Champaign, IL | Posted on May 20th, 2010

Although silicon is the industry standard semiconductor in most electronic devices, including the photovoltaic cells that solar panels use to convert sunlight into energy, it is hardly the most efficient material available. For example, the semiconductor gallium arsenide and related compound semiconductors offer nearly twice the efficiency as silicon in solar devices, yet they are rarely used in utility-scale applications because of their high manufacturing cost.

U. of I. professors John Rogers and Xiuling Li explored lower-cost ways to manufacture thin films of gallium arsenide that also allowed versatility in the types of devices they could be incorporated into. "If you can reduce substantially the cost of gallium arsenide and other compound semiconductors, then you could expand their range of applications," said Rogers, the Lee J. Flory Founder Chair in Engineering Innovation, and a professor of materials science and engineering and of chemistry.

Typically, gallium arsenide is deposited in a single thin layer on a small wafer. Either the desired device is made directly on the wafer, or the semiconductor-coated wafer is cut up into chips of the desired size. The Illinois group decided to deposit multiple layers of the material on a single wafer, creating a layered, "pancake" stack of gallium arsenide thin films.

"If you grow 10 layers in one growth, you only have to load the wafer one time," said Li, a professor of electrical and computer engineering. "If you do this in 10 growths, loading and unloading with temperature ramp-up and ramp-down take a lot of time. If you consider what is required for each growth - the machine, the preparation, the time, the people - the overhead saving our approach offers is a significant cost reduction."

Next the researchers individually peel off the layers and transfer them. To accomplish this, the stacks alternate layers of aluminum arsenide with the gallium arsenide. Bathing the stacks in a solution of acid and an oxidizing agent dissolves the layers of aluminum arsenide, freeing the individual thin sheets of gallium arsenide. A soft stamp-like device picks up the layers, one at a time from the top down, for transfer to another substrate - glass, plastic or silicon, depending on the application. Then the wafer can be reused for another growth.

"By doing this we can generate much more material more rapidly and more cost effectively," Rogers said. "We're creating bulk quantities of material, as opposed to just the thin single-layer manner in which it is typically grown."

Freeing the material from the wafer also opens the possibility of flexible, thin-film electronics made with gallium arsenide or other high-speed semiconductors. "To make devices that can conform but still retain high performance, that's significant," Li said.

In a paper to be published online May 20 in the journal Nature, the group describes its methods and demonstrates three types of devices using gallium arsenide chips manufactured in multilayer stacks: light sensors, high-speed transistors and solar cells. The authors also provide a detailed cost comparison.

Another advantage of the multilayer technique is the release from area constraints, especially important for solar cells. As the layers are removed from the stack, they can be laid out side-by-side on another substrate to produce a much larger surface area, whereas the typical single-layer process limits area to the size of the wafer.

"For photovoltaics, you want large area coverage to catch as much sunlight as possible. In an extreme case we might grow enough layers to have 10 times the area of the conventional route," Rogers said.

"You really multiply the area coverage, and by a similar multiplier you reduce the cost, while at the same time eliminating the consumption of the wafer," he said.

Among the paper's co-authors are two scientists from Semprius Inc., a North Carolina-based startup company that is beginning to use this technique to manufacture solar cells. A shift from silicon-based panels to more efficient gallium arsenide models could make solar power a more cost-effective form of alternative energy.

Next, the group plans to explore more potential device applications and other semiconductor materials that could adapt to multilayer growth.

The Department of Energy and National Science Foundation-funded team also includes U. of I. postdoctoral researchers Jongseung Yoon, Sungjin Jo and Inhwa Jung; students Ik Su Chun and Hoon-Sik Kin; and electrical and computer engineering professor James Coleman, along with Ungyu Paik, of Hanyang University in Seoul, and Semprius scientists Matthew Meitl and Etienne Menard.

####

For more information, please click here

Contacts:
Liz Ahlberg
Physical Sciences Editor
217-244-1073

Copyright © University of Illinois

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanoscale worms provide new route to nano-necklace structures March 29th, 2015

Solving molybdenum disulfide's 'thin' problem: Research team increases material's light emission by twelve times March 29th, 2015

A first glimpse inside a macroscopic quantum state March 28th, 2015

DFG to Establish One Clinical Research Unit and Five Research Units: New Projects to Investigate Complications in Pregnancy, Particle Physics, Nanoparticles, Implants and Transport Planning / Approximately 13 Million Euros in Funding for an Initial Three-Year Period March 28th, 2015

Thin films

LAMDAMAP 2015 hosted by the University March 26th, 2015

A new method for making perovskite solar cells March 16th, 2015

Engineers create chameleon-like artificial 'skin' that shifts color on demand March 12th, 2015

Researchers synthesize new thin-film material for use in fuel cells: Article in the journal APL Materials shows how to grow Bi2Pt2O7 pyrochlore, potentially a more effective cathode for future fuel cells March 10th, 2015

Possible Futures

Nanotechnology in Medical Devices Market is expected to reach $8.5 Billion by 2019 March 25th, 2015

Nanotechnology Enabled Drug Delivery to Influence Future Diagnosis and Treatments of Diseases March 21st, 2015

Nanocomposites Market Growth, Industry Outlook To 2020 by Grand View Research, Inc. March 21st, 2015

Nanotechnology Drug Delivery Market in the US 2012-2016 : Latest Report Available by Radiant Insights, Inc March 16th, 2015

Academic/Education

LAMDAMAP 2015 hosted by the University March 26th, 2015

SUNY Poly & M+W Make Major Announcement: Major Expansion To Include M+W Owned Gehrlicher Solar America Corporation That Will Create up to 400 Jobs to Develop Solar Power Plants at SUNY Poly Sites Across New York State March 26th, 2015

SUNY POLY CNSE to Host First Ever Northeast Semi Supply Conference (NESCO) Conference Will Connect New and Emerging Innovators in the Northeastern US and Canada with Industry Leaders and Strategic Investors to Discuss Future Growth Opportunities in NYS March 25th, 2015

FEI Joins University of Ulm and CEOS on SALVE Project Research Collaboration: The Sub-Ångström Low Voltage Electron (SALVE) microscope should improve contrast and reduce damage on bio-molecules and two-dimensional nanomaterials, such as graphene March 18th, 2015

Chip Technology

State-of-the-art online system unveiled to pinpoint metrology software accuracy March 27th, 2015

SUNY POLY CNSE to Host First Ever Northeast Semi Supply Conference (NESCO) Conference Will Connect New and Emerging Innovators in the Northeastern US and Canada with Industry Leaders and Strategic Investors to Discuss Future Growth Opportunities in NYS March 25th, 2015

NXP and GLOBALFOUNDRIES Announce Production of 40nm Embedded Non-Volatile Memory Technology: Co-developed technology to leverage GLOBALFOUNDRIES 40nm process technology platform March 24th, 2015

Building shape inspires new material discovery March 24th, 2015

Announcements

Nanoscale worms provide new route to nano-necklace structures March 29th, 2015

Solving molybdenum disulfide's 'thin' problem: Research team increases material's light emission by twelve times March 29th, 2015

A first glimpse inside a macroscopic quantum state March 28th, 2015

DFG to Establish One Clinical Research Unit and Five Research Units: New Projects to Investigate Complications in Pregnancy, Particle Physics, Nanoparticles, Implants and Transport Planning / Approximately 13 Million Euros in Funding for an Initial Three-Year Period March 28th, 2015

Energy

Solving molybdenum disulfide's 'thin' problem: Research team increases material's light emission by twelve times March 29th, 2015

LAMDAMAP 2015 hosted by the University March 26th, 2015

SUNY Poly & M+W Make Major Announcement: Major Expansion To Include M+W Owned Gehrlicher Solar America Corporation That Will Create up to 400 Jobs to Develop Solar Power Plants at SUNY Poly Sites Across New York State March 26th, 2015

Hong Kong Investors Bullish on Dais Analytic Invest $5.75M, Provide $60M Contract, and Create New Joint Venture Company March 26th, 2015

Solar/Photovoltaic

Solving molybdenum disulfide's 'thin' problem: Research team increases material's light emission by twelve times March 29th, 2015

LAMDAMAP 2015 hosted by the University March 26th, 2015

SUNY Poly & M+W Make Major Announcement: Major Expansion To Include M+W Owned Gehrlicher Solar America Corporation That Will Create up to 400 Jobs to Develop Solar Power Plants at SUNY Poly Sites Across New York State March 26th, 2015

New kind of 'tandem' solar cell developed: Researchers combine 2 types of photovoltaic material to make a cell that harnesses more sunlight March 24th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE