Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Semiconductor manufacturing technique holds promise for solar energy

A flexible array of gallium arsenide solar cells. Gallium arsenide and other compound semiconductors are more efficient than the more commonly used silicon. Photo courtesy John Rogers
A flexible array of gallium arsenide solar cells. Gallium arsenide and other compound semiconductors are more efficient than the more commonly used silicon. Photo courtesy John Rogers

Abstract:
Thanks to a new semiconductor manufacturing method pioneered at the University of Illinois, the future of solar energy just got brighter

Semiconductor manufacturing technique holds promise for solar energy

Champaign, IL | Posted on May 20th, 2010

Although silicon is the industry standard semiconductor in most electronic devices, including the photovoltaic cells that solar panels use to convert sunlight into energy, it is hardly the most efficient material available. For example, the semiconductor gallium arsenide and related compound semiconductors offer nearly twice the efficiency as silicon in solar devices, yet they are rarely used in utility-scale applications because of their high manufacturing cost.

U. of I. professors John Rogers and Xiuling Li explored lower-cost ways to manufacture thin films of gallium arsenide that also allowed versatility in the types of devices they could be incorporated into. "If you can reduce substantially the cost of gallium arsenide and other compound semiconductors, then you could expand their range of applications," said Rogers, the Lee J. Flory Founder Chair in Engineering Innovation, and a professor of materials science and engineering and of chemistry.

Typically, gallium arsenide is deposited in a single thin layer on a small wafer. Either the desired device is made directly on the wafer, or the semiconductor-coated wafer is cut up into chips of the desired size. The Illinois group decided to deposit multiple layers of the material on a single wafer, creating a layered, "pancake" stack of gallium arsenide thin films.

"If you grow 10 layers in one growth, you only have to load the wafer one time," said Li, a professor of electrical and computer engineering. "If you do this in 10 growths, loading and unloading with temperature ramp-up and ramp-down take a lot of time. If you consider what is required for each growth - the machine, the preparation, the time, the people - the overhead saving our approach offers is a significant cost reduction."

Next the researchers individually peel off the layers and transfer them. To accomplish this, the stacks alternate layers of aluminum arsenide with the gallium arsenide. Bathing the stacks in a solution of acid and an oxidizing agent dissolves the layers of aluminum arsenide, freeing the individual thin sheets of gallium arsenide. A soft stamp-like device picks up the layers, one at a time from the top down, for transfer to another substrate - glass, plastic or silicon, depending on the application. Then the wafer can be reused for another growth.

"By doing this we can generate much more material more rapidly and more cost effectively," Rogers said. "We're creating bulk quantities of material, as opposed to just the thin single-layer manner in which it is typically grown."

Freeing the material from the wafer also opens the possibility of flexible, thin-film electronics made with gallium arsenide or other high-speed semiconductors. "To make devices that can conform but still retain high performance, that's significant," Li said.

In a paper to be published online May 20 in the journal Nature, the group describes its methods and demonstrates three types of devices using gallium arsenide chips manufactured in multilayer stacks: light sensors, high-speed transistors and solar cells. The authors also provide a detailed cost comparison.

Another advantage of the multilayer technique is the release from area constraints, especially important for solar cells. As the layers are removed from the stack, they can be laid out side-by-side on another substrate to produce a much larger surface area, whereas the typical single-layer process limits area to the size of the wafer.

"For photovoltaics, you want large area coverage to catch as much sunlight as possible. In an extreme case we might grow enough layers to have 10 times the area of the conventional route," Rogers said.

"You really multiply the area coverage, and by a similar multiplier you reduce the cost, while at the same time eliminating the consumption of the wafer," he said.

Among the paper's co-authors are two scientists from Semprius Inc., a North Carolina-based startup company that is beginning to use this technique to manufacture solar cells. A shift from silicon-based panels to more efficient gallium arsenide models could make solar power a more cost-effective form of alternative energy.

Next, the group plans to explore more potential device applications and other semiconductor materials that could adapt to multilayer growth.

The Department of Energy and National Science Foundation-funded team also includes U. of I. postdoctoral researchers Jongseung Yoon, Sungjin Jo and Inhwa Jung; students Ik Su Chun and Hoon-Sik Kin; and electrical and computer engineering professor James Coleman, along with Ungyu Paik, of Hanyang University in Seoul, and Semprius scientists Matthew Meitl and Etienne Menard.

####

For more information, please click here

Contacts:
Liz Ahlberg
Physical Sciences Editor
217-244-1073

Copyright © University of Illinois

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

University of Minnesota engineers make sound loud enough to bend light on a computer chip: Device could improve wireless communications systems November 28th, 2014

Study details laser pulse effects on behavior of electrons November 28th, 2014

Single-atom gold catalysts may offer path to low-cost production of fuel and chemicals November 28th, 2014

Production of Anticancer Drug from Nanofibers in Iran November 28th, 2014

Thin films

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

New way to move atomically thin semiconductors for use in flexible devices November 13th, 2014

Graphene Frontiers Partners with Madico to Accelerate Material Production: Deal to ignite and fulfill demand for industrial scale graphene film that supports energy, consumer electronics, membranes/filtration, solar and other applications November 12th, 2014

New materials for more powerful solar cells: Major breakthrough in solar energy November 11th, 2014

Possible Futures

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Researchers discern the shapes of high-order Brownian motions November 17th, 2014

VDMA Electronics Production Equipment: Growth track for 2014 and 2015 confirmed: Business climate survey shows robust industry sector November 14th, 2014

Open Materials Development Will Be Key for HP's Success in 3D Printing: HP can make a big splash in 3D printing, but it needs to shore up technology claims and avoid the temptation of the razor/razor blade business model in order to flourish November 11th, 2014

Academic/Education

SUNY Poly Student Awarded Fellowship with the U.S. Department of Energy's Postgraduate Research Program: Ph.D. Candidate Accepts Postmaster's Appointment To Conduct Research At Albany NanoTech Complex November 13th, 2014

SUNY Polytechnic Institute Hosts Massive Crowd of More Than 3,000 People Who Attended Community Day Activities Across New York State: CNSE’s ‘NANOvember’ kickoff event highlights New York State’s growing high-tech sector with open house events in Albany, Utica, and Rochester November 3rd, 2014

SUNY Polytechnic Institute Invites the Public to Attend its Popular Statewide 'NANOvember' Series of Outreach and Educational Events October 23rd, 2014

First Canada Excellence Research Chair gets $10 million from the federal government for oilsands research at the University of Calgary: Federal government announces prestigious research chair to study improving oil production efficiency October 19th, 2014

Chip Technology

University of Minnesota engineers make sound loud enough to bend light on a computer chip: Device could improve wireless communications systems November 28th, 2014

SEMATECH to Showcase Innovation and Advances in Manufacturing at SEMICON Japan 2014: SEMATECH experts will share the latest techniques, emerging trends and best practices in advanced manufacturing strategies and methodologies November 26th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Nanometrics Announces Upcoming Investor Events November 19th, 2014

Announcements

University of Minnesota engineers make sound loud enough to bend light on a computer chip: Device could improve wireless communications systems November 28th, 2014

Study details laser pulse effects on behavior of electrons November 28th, 2014

Single-atom gold catalysts may offer path to low-cost production of fuel and chemicals November 28th, 2014

Production of Anticancer Drug from Nanofibers in Iran November 28th, 2014

Energy

Single-atom gold catalysts may offer path to low-cost production of fuel and chemicals November 28th, 2014

Lawrence Livermore researchers develop efficient method to produce nanoporous metals November 25th, 2014

Research yields material made of single-atom layers that snap together like Legos November 25th, 2014

Blu-ray disc can be used to improve solar cell performance: Data storage pattern transferred to solar cell increases light absorption November 25th, 2014

Solar/Photovoltaic

Research yields material made of single-atom layers that snap together like Legos November 25th, 2014

Blu-ray disc can be used to improve solar cell performance: Data storage pattern transferred to solar cell increases light absorption November 25th, 2014

UO-industry collaboration points to improved nanomaterials: University of Oregon microscope puts spotlight on the surface structure of quantum dots for designing new solar devices November 20th, 2014

Eight19 secures £1m funding: Investment to develop production technology, and expand commercial activities for organic photovoltaics November 19th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE