Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Physicists' findings about helium could lead to more accurate temperature, pressure measurements

Vial of glowing untrapure helium.  Image by Jurii
Vial of glowing untrapure helium. Image by Jurii

Abstract:
In the May 7 edition of Physical Review Letters, a journal of the American Physical Society, an international team led by University of Delaware researchers reports new findings about helium that may lead to more accurate standards for how temperature and pressure are measured.

by Tracey Bryant

Physicists' findings about helium could lead to more accurate temperature, pressure measurements

Newark, DE | Posted on May 19th, 2010

In the article, highlighted as an "Editor's Suggestion" by the journal, the scientists provide a new theoretical computation of the force acting between a pair of helium atoms, referred to as "pair potential," that is more accurate than any published to date.

Krzysztof Szalewicz, professor in the UD Department of Physics and Astronomy, led the study, which involved Wojciech Cencek, a postdoctoral researcher at UD, and colleagues from the University of Warsaw and Adam Mickiewicz University in Poland, and the University of Oslo in Norway.

Most of us know helium as a gas for filling party balloons or for making your voice temporarily sound like a cartoon character's. But this element named for the sun is used in lasers for eye surgery, to cooling agents in nuclear reactors.

Helium has a number of characteristics that make it special, Szalewicz says. It is the most stable of all the elements and has the lowest boiling point. It becomes a fluid at temperatures close to absolute zero while most other materials are a solid. In fact, helium is a liquid even at absolute zero and becomes a solid only at high pressure.

Helium is the only substance that exhibits superfluidity, and it will not burn or react with other elements, which is one reason why it is used as a pressurizing agent for liquid fuel rockets in space exploration, among many other applications.

"Of all the elements, helium is closest to the ideal gas," Szalewicz says. "Two helium atoms form the weakest bound diatomic molecule. All the properties of temperature, for example, which is a measure of the kinetic energy of particles in matter, can be modeled if the force acting between a pair of helium atoms is known.

"This has been the subject of extensive activity," Szalewicz notes, "as accurate knowledge of the pair potential of helium is of importance in several branches of science, including low-temperature condensed matter physics, spectroscopy, and metrology, which is the science of measurement."

The research team used complex numerical techniques to compute several physical effects in the helium pair potential which are rarely considered in molecular physics. These effects include couplings of the electronic and nuclear motions, contributions due to Einstein's special relativity, and the so-called quantum electrodynamics contributions due to the interaction of the electrons with the electromagnetic field.

The scientists predict that the binding energy of two molecules of helium, chemically referred to as a "dimer," is 6,790 times smaller than the potential depth, and the average separation between the atoms is 47 angstroms compared to the typical chemical bond length of about 1 angstrom. The estimated uncertainties of the theoretical results are an order of magnitude smaller than the best experimental ones, they report.

The thermophysical properties of gaseous helium computed from this potential now will be used to calibrate the apparatus for measuring properties such as viscosities or the speed of sound.

"These calculations should lead to new, better standards for quantities such as temperature or pressure," Szalewicz says. "Continuous improvement of metrology standards is important for progress in experimental science, as well as in many industrial applications."

The research was supported in part by grants from the National Institute of Standards and Technology and the National Science Foundation.

####

For more information, please click here

Contacts:
Phone: (302) 831-2792

Copyright © University of Delaware

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Introduction of the LVEM25 Low Voltage Electron Microscope April 21st, 2015

Nondestructive 3-D Imaging of Biological Cells with Sound April 20th, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Yale-NUS, NUS and UT Austin researchers establish theoretical framework for graphene physics: Making strides towards using graphene to create new electronic devices April 20th, 2015

Possible Futures

A glass fiber that brings light to a standstill: By coupling photons to atoms, light in a glass fiber can be slowed down to the speed of an express train; for a short while it can even be brought to a complete stop April 9th, 2015

Nanotechnology in Medical Devices Market is expected to reach $8.5 Billion by 2019 March 25th, 2015

Nanotechnology Enabled Drug Delivery to Influence Future Diagnosis and Treatments of Diseases March 21st, 2015

Nanocomposites Market Growth, Industry Outlook To 2020 by Grand View Research, Inc. March 21st, 2015

Academic/Education

Iranian Female Professor Awarded UNESCO Medal in Nanoscience April 20th, 2015

JPK reports on the use of the NanoWizardŽ 3 AFM system at the Hebrew University of Jerusalem April 14th, 2015

UK National Graphene Institute Selects Bruker as Official Partner: World-Leading Graphene Research Facility Purchases Multiple Bruker AFMs April 7th, 2015

SUNY Poly CNSE and Title Sponsor SEFCU Name Capital Region Teams Advancing to the Final Round of the 2015 New York Business Plan Competition March 30th, 2015

Discoveries

Quantum model reveals surface structure of water: National Physical Laboratory, IBM and Edinburgh University have used a new quantum model to reveal the molecular structure of water's liquid surface April 20th, 2015

Happily ever after: Scientists arrange protein-nanoparticle marriage: New biotech method could lead to development of HIV vaccine, targeted cancer treatment April 20th, 2015

Nondestructive 3-D Imaging of Biological Cells with Sound April 20th, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Announcements

Introduction of the LVEM25 Low Voltage Electron Microscope April 21st, 2015

Nondestructive 3-D Imaging of Biological Cells with Sound April 20th, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Yale-NUS, NUS and UT Austin researchers establish theoretical framework for graphene physics: Making strides towards using graphene to create new electronic devices April 20th, 2015

Tools

Introduction of the LVEM25 Low Voltage Electron Microscope April 21st, 2015

Better battery imaging paves way for renewable energy future April 20th, 2015

Nondestructive 3-D Imaging of Biological Cells with Sound April 20th, 2015

Oxford Instruments commissions high field outsert magnet system for the National High Magnetic Field Laboratory 32 Tesla magnet program April 17th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project