Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Physicists' findings about helium could lead to more accurate temperature, pressure measurements

Vial of glowing untrapure helium.  Image by Jurii
Vial of glowing untrapure helium. Image by Jurii

Abstract:
In the May 7 edition of Physical Review Letters, a journal of the American Physical Society, an international team led by University of Delaware researchers reports new findings about helium that may lead to more accurate standards for how temperature and pressure are measured.

by Tracey Bryant

Physicists' findings about helium could lead to more accurate temperature, pressure measurements

Newark, DE | Posted on May 19th, 2010

In the article, highlighted as an "Editor's Suggestion" by the journal, the scientists provide a new theoretical computation of the force acting between a pair of helium atoms, referred to as "pair potential," that is more accurate than any published to date.

Krzysztof Szalewicz, professor in the UD Department of Physics and Astronomy, led the study, which involved Wojciech Cencek, a postdoctoral researcher at UD, and colleagues from the University of Warsaw and Adam Mickiewicz University in Poland, and the University of Oslo in Norway.

Most of us know helium as a gas for filling party balloons or for making your voice temporarily sound like a cartoon character's. But this element named for the sun is used in lasers for eye surgery, to cooling agents in nuclear reactors.

Helium has a number of characteristics that make it special, Szalewicz says. It is the most stable of all the elements and has the lowest boiling point. It becomes a fluid at temperatures close to absolute zero while most other materials are a solid. In fact, helium is a liquid even at absolute zero and becomes a solid only at high pressure.

Helium is the only substance that exhibits superfluidity, and it will not burn or react with other elements, which is one reason why it is used as a pressurizing agent for liquid fuel rockets in space exploration, among many other applications.

"Of all the elements, helium is closest to the ideal gas," Szalewicz says. "Two helium atoms form the weakest bound diatomic molecule. All the properties of temperature, for example, which is a measure of the kinetic energy of particles in matter, can be modeled if the force acting between a pair of helium atoms is known.

"This has been the subject of extensive activity," Szalewicz notes, "as accurate knowledge of the pair potential of helium is of importance in several branches of science, including low-temperature condensed matter physics, spectroscopy, and metrology, which is the science of measurement."

The research team used complex numerical techniques to compute several physical effects in the helium pair potential which are rarely considered in molecular physics. These effects include couplings of the electronic and nuclear motions, contributions due to Einstein's special relativity, and the so-called quantum electrodynamics contributions due to the interaction of the electrons with the electromagnetic field.

The scientists predict that the binding energy of two molecules of helium, chemically referred to as a "dimer," is 6,790 times smaller than the potential depth, and the average separation between the atoms is 47 angstroms compared to the typical chemical bond length of about 1 angstrom. The estimated uncertainties of the theoretical results are an order of magnitude smaller than the best experimental ones, they report.

The thermophysical properties of gaseous helium computed from this potential now will be used to calibrate the apparatus for measuring properties such as viscosities or the speed of sound.

"These calculations should lead to new, better standards for quantities such as temperature or pressure," Szalewicz says. "Continuous improvement of metrology standards is important for progress in experimental science, as well as in many industrial applications."

The research was supported in part by grants from the National Institute of Standards and Technology and the National Science Foundation.

####

For more information, please click here

Contacts:
Phone: (302) 831-2792

Copyright © University of Delaware

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Halas wins American Physical Society's Lilienfeld Prize: Rice University nanoscientist honored for pioneering research in plasmonics October 23rd, 2017

GTC Shanghai Highlights GF’s Momentum in China: Company shares details of technology roadmap and customer adoption in the world’s fastest-growing market for semiconductors October 23rd, 2017

Nanobiotix completes patient inclusion for Phase II/III trial of NBTXR3 in soft tissue sarcoma October 23rd, 2017

Arrowhead Pharmaceuticals Reports Inducement Grants under NASDAQ Marketplace Rule 5635(c)(4) October 23rd, 2017

Possible Futures

GTC Shanghai Highlights GF’s Momentum in China: Company shares details of technology roadmap and customer adoption in the world’s fastest-growing market for semiconductors October 23rd, 2017

Researchers bring optical communication onto silicon chips: Ultrathin films of a semiconductor that emits and detects light can be stacked on top of silicon wafers October 23rd, 2017

Nanotube fiber antennas as capable as copper: Rice University researchers show their flexible fibers work well but weigh much less October 23rd, 2017

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Academic/Education

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Graduate Students from Across the Country Attend Hands-on NanoCamp: Prominent scientists Warren Oliver, Ph.D., and George Pharr, Ph.D., presented a weeklong NanoCamp for hand-picked graduate students across the United States July 26th, 2017

The Physics Department of Imperial College, London, uses the Quorum Q150T to deposit metals and ITO to make plasmonic sensors and electric contact pads July 13th, 2017

Discoveries

Researchers bring optical communication onto silicon chips: Ultrathin films of a semiconductor that emits and detects light can be stacked on top of silicon wafers October 23rd, 2017

Nanotube fiber antennas as capable as copper: Rice University researchers show their flexible fibers work well but weigh much less October 23rd, 2017

A step closer to understanding quantum mechanics: Swansea University’s physicists develop a new quantum simulation protocol October 22nd, 2017

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Announcements

Nanobiotix completes patient inclusion for Phase II/III trial of NBTXR3 in soft tissue sarcoma October 23rd, 2017

Arrowhead Pharmaceuticals Reports Inducement Grants under NASDAQ Marketplace Rule 5635(c)(4) October 23rd, 2017

Researchers bring optical communication onto silicon chips: Ultrathin films of a semiconductor that emits and detects light can be stacked on top of silicon wafers October 23rd, 2017

Nanotube fiber antennas as capable as copper: Rice University researchers show their flexible fibers work well but weigh much less October 23rd, 2017

Tools

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

Nanometrics Announces Preliminary Results for the Third Quarter of 2017: Quarterly Results Impacted by Delays in Revenue Recognition on Multiple Systems into Japan October 12th, 2017

Seeing the next dimension of computer chips: Researchers image perfectly smooth side-surfaces of 3-D silicon crystals with a scanning tunneling microscope, paving the way for smaller and faster computing devices October 11th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project