Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Molecule-sized bait used by UCLA research team to fish for new drug targets

Fishing for molecules
(Left) Atomic force microscopy image of serotonin precursor-modified surface with captured serotonin receptor-containing nanovesicles. (Right) Illustration of the molecular structures of the surface chemistry and the relative size differences between the "bait" (5-hydroxytryptophan) and the membrane-associated serotonin receptors selectively captured by these surfaces.
Fishing for molecules (Left) Atomic force microscopy image of serotonin precursor-modified surface with captured serotonin receptor-containing nanovesicles. (Right) Illustration of the molecular structures of the surface chemistry and the relative size differences between the "bait" (5-hydroxytryptophan) and the membrane-associated serotonin receptors selectively captured by these surfaces.

Abstract:
The technique could lead to a new generation of psychiatric medications

By Mike Rodewald

Molecule-sized bait used by UCLA research team to fish for new drug targets

Los Angeles, CA | Posted on May 15th, 2010

UCLA researchers and their collaborators have developed a method that could open the door for investigations into the function of half of all proteins in the human body.

The research team has demonstrated nanoscale control over molecules, allowing for the precise study of interactions between proteins and small molecules. Their new technique, in which molecules are used as bait to capture and study large biomolecules, could lead to a new generation of psychiatric medications.

In a paper published last month in the journal ACS Chemical Neuroscience, an interdisciplinary team of researchers from UCLA and the Pennsylvania State University (PSU) report on their investigation of the interactions between large biomolecules, which include DNA and proteins, and small molecules, which include hormones and neurotransmitters such as serotonin.

The research team, led by Anne Andrews, professor of psychiatry and a researcher at both the Semel Institute for Neuroscience and Human Behavior at UCLA and UCLA's California NanoSystems Institute (CNSI), is studying these interactions to identify a new generation of targets, or key molecules that correspond to specific diseases or conditions.

Interactions between large biomolecules and small molecules are ubiquitous in nature; they are the method for communication within and between cells. But these interactions have proven difficult to isolate in a laboratory setting. Increased understanding of these interactions is vital for the development of new medications for psychiatric disorders, the researchers say.

"Currently, little is known about which targets apply to specific diseases," Andrews said. "Pharmaceutical companies are very good at designing medications once they have a target to go after; my group is working on providing them with targets."

Up to this point, drug development for psychiatric disorders such as depression has been a trial-and-error process in which pharmaceutical companies refine new drugs based on a few existing drugs that were discovered accidentally. Andrews said she hopes that her team's research will lead to more effective treatments, because current depression medications only work for 30 to 50 percent of the population.

Nanoscale control is the key to the UCLA-Penn State team's findings. Their breakthrough capitalizes on work by the research group of co-author Paul Weiss on patterning self-assembled monolayers (SAMs), single layers of molecules that orient themselves on flat surfaces. Weiss, a distinguished professor of chemistry and biochemistry who holds UCLA's Fred Kavli Chair in Nanosystems Sciences, and others discovered that SAMs don't actually form perfect surfaces. They contain defects, which can in turn be used to isolate single molecules.

"Currently we are able to space defects out over a surface. We then use these defects to control the placement and environment of the individual functional molecules," said Weiss, who is also director of the CNSI.

Even spacing is important because the UCLA-Penn State team placed serotonin, a small molecule, in defects to act as bait to capture and study large molecules. If the defects are not widely spaced, there is not enough space between serotonin molecules for each to capture a large molecule.

Large biomolecule and small molecule interactions have proved notoriously difficult to study using previous methods. When the SAM fishing pole baited with serotonin captures a large molecule, the research team is able to study the interactions in a way that replicates the molecules' natural interactions.

####

About California NanoSystems Institute at UCLA
The California NanoSystems Institute at UCLA is an integrated research center operating jointly at UCLA and UC Santa Barbara whose mission is to foster interdisciplinary collaborations for discoveries in nanosystems and nanotechnology; train the next generation of scientists, educators and technology leaders; and facilitate partnerships with industry, fueling economic development and the social well-being of California, the United States and the world. The CNSI was established in 2000 with $100 million from the state of California and an additional $250 million in federal research grants and industry funding. At the institute, scientists in the areas of biology, chemistry, biochemistry, physics, mathematics, computational science and engineering are measuring, modifying and manipulating the building blocks of our world atoms and molecules. These scientists benefit from an integrated laboratory culture enabling them to conduct dynamic research at the nanoscale, leading to significant breakthroughs in the areas of health, energy, the environment and information technology.

For more information, please click here

Contacts:
Media Contacts
Jennifer Marcus
310-267-4839


Mike Rodewald
310-267-5883

Copyright © California NanoSystems Institute at UCLA

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Device to control 'color' of electrons in graphene provides path to future electronics August 31st, 2016

Graphene key to growing 2-dimensional semiconductor with extraordinary properties August 30th, 2016

University of Akron researchers find thin layers of water can become ice-like at room temperature: Results could lead to an assortment of anti-friction solutions August 30th, 2016

Nanocatalysis for organic chemistry: This research article by Dr. Qien Xu et al. is published in Current Organic Chemistry, Volume 20, Issue 19, 2016 August 30th, 2016

Possible Futures

Device to control 'color' of electrons in graphene provides path to future electronics August 31st, 2016

Graphene key to growing 2-dimensional semiconductor with extraordinary properties August 30th, 2016

Nanocatalysis for organic chemistry: This research article by Dr. Qien Xu et al. is published in Current Organic Chemistry, Volume 20, Issue 19, 2016 August 30th, 2016

Continuous roll-process technology for transferring and packaging flexible LSI August 29th, 2016

Academic/Education

AIM Photonics Announces Release of Process Design Kit (PDK) for Integrated Silicon Photonics Design August 25th, 2016

Nanotech Security Featured by Simon Fraser University: Company's Anti-Counterfeiting Technology Developed With the Help of University's 4D LABS Materials Research Institute August 21st, 2016

W.M. Keck Foundation awards Cal State LA a $375,000 research and education grant August 4th, 2016

Thomas Swan and NGI announce unique partnership July 28th, 2016

Self Assembly

Smarter self-assembly opens new pathways for nanotechnology: Brookhaven Lab scientists discover a way to create billionth-of-a-meter structures that snap together in complex patterns with unprecedented efficiency August 9th, 2016

Magnetic atoms arranged in neat rows: FAU physicists enable one-dimensional atom chains to grow August 5th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

WSU researchers develop shape-changing 'smart' material: Heat, light stimulate self-assembly July 4th, 2016

Nanomedicine

Designing ultrasound tools with Lego-like proteins August 29th, 2016

Nanofiber scaffolds demonstrate new features in the behavior of stem and cancer cells August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

50 years after the release of the film 'Fantastic Voyage,' science upstages fiction: Science upstages fiction with nanorobotic agents designed to travel in the human body to treat cancer August 25th, 2016

Discoveries

Device to control 'color' of electrons in graphene provides path to future electronics August 31st, 2016

Graphene key to growing 2-dimensional semiconductor with extraordinary properties August 30th, 2016

University of Akron researchers find thin layers of water can become ice-like at room temperature: Results could lead to an assortment of anti-friction solutions August 30th, 2016

Nanocatalysis for organic chemistry: This research article by Dr. Qien Xu et al. is published in Current Organic Chemistry, Volume 20, Issue 19, 2016 August 30th, 2016

Announcements

Device to control 'color' of electrons in graphene provides path to future electronics August 31st, 2016

Graphene key to growing 2-dimensional semiconductor with extraordinary properties August 30th, 2016

University of Akron researchers find thin layers of water can become ice-like at room temperature: Results could lead to an assortment of anti-friction solutions August 30th, 2016

Nanocatalysis for organic chemistry: This research article by Dr. Qien Xu et al. is published in Current Organic Chemistry, Volume 20, Issue 19, 2016 August 30th, 2016

Nanobiotechnology

Designing ultrasound tools with Lego-like proteins August 29th, 2016

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

Nanofiber scaffolds demonstrate new features in the behavior of stem and cancer cells August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

Research partnerships

Device to control 'color' of electrons in graphene provides path to future electronics August 31st, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

A new way to display the 3-D structure of molecules: Metal-organic frameworks provide a new platform for solving the structure of hard-to-study samples August 21st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic