Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Molecule-sized bait used by UCLA research team to fish for new drug targets

Fishing for molecules
(Left) Atomic force microscopy image of serotonin precursor-modified surface with captured serotonin receptor-containing nanovesicles. (Right) Illustration of the molecular structures of the surface chemistry and the relative size differences between the "bait" (5-hydroxytryptophan) and the membrane-associated serotonin receptors selectively captured by these surfaces.
Fishing for molecules (Left) Atomic force microscopy image of serotonin precursor-modified surface with captured serotonin receptor-containing nanovesicles. (Right) Illustration of the molecular structures of the surface chemistry and the relative size differences between the "bait" (5-hydroxytryptophan) and the membrane-associated serotonin receptors selectively captured by these surfaces.

Abstract:
The technique could lead to a new generation of psychiatric medications

By Mike Rodewald

Molecule-sized bait used by UCLA research team to fish for new drug targets

Los Angeles, CA | Posted on May 15th, 2010

UCLA researchers and their collaborators have developed a method that could open the door for investigations into the function of half of all proteins in the human body.

The research team has demonstrated nanoscale control over molecules, allowing for the precise study of interactions between proteins and small molecules. Their new technique, in which molecules are used as bait to capture and study large biomolecules, could lead to a new generation of psychiatric medications.

In a paper published last month in the journal ACS Chemical Neuroscience, an interdisciplinary team of researchers from UCLA and the Pennsylvania State University (PSU) report on their investigation of the interactions between large biomolecules, which include DNA and proteins, and small molecules, which include hormones and neurotransmitters such as serotonin.

The research team, led by Anne Andrews, professor of psychiatry and a researcher at both the Semel Institute for Neuroscience and Human Behavior at UCLA and UCLA's California NanoSystems Institute (CNSI), is studying these interactions to identify a new generation of targets, or key molecules that correspond to specific diseases or conditions.

Interactions between large biomolecules and small molecules are ubiquitous in nature; they are the method for communication within and between cells. But these interactions have proven difficult to isolate in a laboratory setting. Increased understanding of these interactions is vital for the development of new medications for psychiatric disorders, the researchers say.

"Currently, little is known about which targets apply to specific diseases," Andrews said. "Pharmaceutical companies are very good at designing medications once they have a target to go after; my group is working on providing them with targets."

Up to this point, drug development for psychiatric disorders such as depression has been a trial-and-error process in which pharmaceutical companies refine new drugs based on a few existing drugs that were discovered accidentally. Andrews said she hopes that her team's research will lead to more effective treatments, because current depression medications only work for 30 to 50 percent of the population.

Nanoscale control is the key to the UCLA-Penn State team's findings. Their breakthrough capitalizes on work by the research group of co-author Paul Weiss on patterning self-assembled monolayers (SAMs), single layers of molecules that orient themselves on flat surfaces. Weiss, a distinguished professor of chemistry and biochemistry who holds UCLA's Fred Kavli Chair in Nanosystems Sciences, and others discovered that SAMs don't actually form perfect surfaces. They contain defects, which can in turn be used to isolate single molecules.

"Currently we are able to space defects out over a surface. We then use these defects to control the placement and environment of the individual functional molecules," said Weiss, who is also director of the CNSI.

Even spacing is important because the UCLA-Penn State team placed serotonin, a small molecule, in defects to act as bait to capture and study large molecules. If the defects are not widely spaced, there is not enough space between serotonin molecules for each to capture a large molecule.

Large biomolecule and small molecule interactions have proved notoriously difficult to study using previous methods. When the SAM fishing pole baited with serotonin captures a large molecule, the research team is able to study the interactions in a way that replicates the molecules' natural interactions.

####

About California NanoSystems Institute at UCLA
The California NanoSystems Institute at UCLA is an integrated research center operating jointly at UCLA and UC Santa Barbara whose mission is to foster interdisciplinary collaborations for discoveries in nanosystems and nanotechnology; train the next generation of scientists, educators and technology leaders; and facilitate partnerships with industry, fueling economic development and the social well-being of California, the United States and the world. The CNSI was established in 2000 with $100 million from the state of California and an additional $250 million in federal research grants and industry funding. At the institute, scientists in the areas of biology, chemistry, biochemistry, physics, mathematics, computational science and engineering are measuring, modifying and manipulating the building blocks of our world — atoms and molecules. These scientists benefit from an integrated laboratory culture enabling them to conduct dynamic research at the nanoscale, leading to significant breakthroughs in the areas of health, energy, the environment and information technology.

For more information, please click here

Contacts:
Media Contacts
Jennifer Marcus
310-267-4839


Mike Rodewald
310-267-5883

Copyright © California NanoSystems Institute at UCLA

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

FEI Opens New Technology Center in Czech Republic: FEI expands its presence in Brno with the opening of a new, larger facility September 18th, 2014

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

The Pocket Project will develop a low-cost and accurate point-of-care test to diagnose Tuberculosis: ICN2 holds a follow-up meeting of the Project on September 18th - 19th September 18th, 2014

New non-invasive technique could revolutionize the imaging of metastatic cancer September 17th, 2014

Possible Futures

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Academic/Education

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

Malvern technology delivers Malvern reliability in multi-disciplinary lab at Queen Mary University London September 9th, 2014

State University of New York Trustees Unanimously Approve SUNY Polytechnic Institute (SUNY Poly) as New Name for Merged SUNY CNSE / SUNYIT September 9th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Self Assembly

Rice rolls 'neat' nanotube fibers: Rice University researchers' acid-free approach leads to strong conductive carbon threads September 15th, 2014

Molecular self-assembly controls graphene-edge configuration September 10th, 2014

Rice chemist wins rare NSF Special Creativity Award: Grant extension will bolster Zubarev's effort to produce gold nanorods September 8th, 2014

Magnetic nanocubes self-assemble into helical superstructures September 4th, 2014

Nanomedicine

The Pocket Project will develop a low-cost and accurate point-of-care test to diagnose Tuberculosis: ICN2 holds a follow-up meeting of the Project on September 18th - 19th September 18th, 2014

New non-invasive technique could revolutionize the imaging of metastatic cancer September 17th, 2014

Recruiting bacteria to be technology innovation partners: September 17th, 2014

Nanoscience makes your wine better September 17th, 2014

Discoveries

The Pocket Project will develop a low-cost and accurate point-of-care test to diagnose Tuberculosis: ICN2 holds a follow-up meeting of the Project on September 18th - 19th September 18th, 2014

New non-invasive technique could revolutionize the imaging of metastatic cancer September 17th, 2014

Toward making lithium-sulfur batteries a commercial reality for a bigger energy punch September 17th, 2014

Recruiting bacteria to be technology innovation partners: September 17th, 2014

Announcements

FEI Opens New Technology Center in Czech Republic: FEI expands its presence in Brno with the opening of a new, larger facility September 18th, 2014

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

The Pocket Project will develop a low-cost and accurate point-of-care test to diagnose Tuberculosis: ICN2 holds a follow-up meeting of the Project on September 18th - 19th September 18th, 2014

Toward making lithium-sulfur batteries a commercial reality for a bigger energy punch September 17th, 2014

Nanobiotechnology

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

Recruiting bacteria to be technology innovation partners: September 17th, 2014

NanoStruck has a High Recovery Rate on Mine Tailings: retrieval of up to 96% of Gold, 88% of Silver and 86% of Palladium September 12th, 2014

Boosting armor for nuclear-waste eating microbes September 12th, 2014

Research partnerships

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

The Pocket Project will develop a low-cost and accurate point-of-care test to diagnose Tuberculosis: ICN2 holds a follow-up meeting of the Project on September 18th - 19th September 18th, 2014

Recruiting bacteria to be technology innovation partners: September 17th, 2014

Carbon Sciences Developing Breakthrough Technology to Mass-Produce Graphene -- the New Miracle Material: Company Enters Into an Agreement With the University of California, Santa Barbara (UCSB) to Fund the Further Development of a New Graphene Process September 16th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE