Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Spin Doctors: Opening the door to studying new, very fast quantum processes

Ames Lab theoretical physicist Viatcheslav Dobrovitski was recently part of a team that produced and controlled rotations of a single quantum spin at rates less than one trillionth of a second.
Ames Lab theoretical physicist Viatcheslav Dobrovitski was recently part of a team that produced and controlled rotations of a single quantum spin at rates less than one trillionth of a second.

Abstract:
For many exciting applications - from someday building quantum computers to developing ultra-precise magnetometry and improving quantum communication across fiber-optic networks - scientists need to better understand really fast and really small quantum systems. Theoretical physicist Viatcheslav Dobrovitski of DOE's Ames Laboratory recently worked with researchers at Lawrence Berkeley National Laboratory and the University of California Santa Barbara to take a significant step forward in the study of quantum processes.

Spin Doctors: Opening the door to studying new, very fast quantum processes

Ames, IA | Posted on May 11th, 2010

The team produced and controlled coherent rotations of a single quantum spin at rates less than one trillionth of a sec­ond. The group's discoveries, which appeared in a recent issue of Science, open the window to study­ing new, very fast quantum processes that were previ­ously impossible to detect and analyze.

Dobrovitski and his colleagues studied quantum spins in diamond, which can contain imperfections called nitrogen-vacancy, or N-V, centers, using sam­ples grown and characterized by researchers at Law­rence Berkeley National Laboratory. Since atoms in diamond sit very tightly in their positions and respond very weakly to heat or other excitation, the spin of an isolated N-V center can be studied with very little inter­ference from the rest of the world.

Isolating quantum spins is important, because to use spins in applications like quantum communication they must rotate smoothly and predictably to retain their quantum properties. When spins are exposed to outside forces, they can get bumped off their path.

"If we want a spin to go from position ‘a' to position ‘b,' an­other way for us to prevent interference from the outside world is to induce the spin rotation as fast as possible so it doesn't have time to interact with other forces," says Dobrovitski.

So researchers at UCSB, who performed the optical and magnetic measurements for the project, applied short and ex­tremely strong pulses of magnetic field to the spins. Similar, but weaker, pulses are used in conventional electron and nuclear magnetic resonance.

As power was increased, the spins started to exhibit a pattern of fast rotations and stallings, caused by the fast changes of the magnetic field during the pulse.

In conventional resonance experiments, the power of a pulse begins low for a short time, reaches a higher and consistent, level for the majority of the pulse and then drops down for a short time. In that case, the affect of pulses' "heads" and "tails" is not very noticeable compared to the even body of the pulse.

But when the magnetic resonance pulse is large and lasts less than a nanosecond, as occurred in the research by Dobrovitski and his colleagues, the pulse is mostly made up of heads and tails.

"If we want to rotate a spin very fast, we necessarily have to deal with the heads and tails," says Dobrovitski. "Our short, strong pulses will consist of mostly just edges. There's no time for a body of the pulse."

The finding that very fast rotations could be induced using these short pulses was a significant discovery in itself.

"We showed that controlled, coherent spin rotation is pos­sible outside the standard framework of nicely defined, long pulses," says Dobrovitski.

In principle, scientists can create much shorter pulse. But these pulses cannot induce a smooth, coherent rotation of a single spin. The pulses' large power excites a plethora of differ­ent degrees of freedom, and the precious quantum coherence of the spin is lost. Thus, the pulses have to be strong but not too strong. Dobrovitski and his colleagues at UCSB found the "sweet spot" for short, strong pulses.

The research team went on to determine experimentally and theoretically that the spins were most controllable when the short pulses had gradual increases and decreases in power.

"Those kinds of pulses seem to gradually awaken the spin processes," says Dobrovitski. "It's most controllable that way, and we can rotate the spins smoothly and coherently but still do re­ally fast rotations."

Next up for Dobrovitski and the team is studying other fast processes in N-V centers using these fast pulses.

"Before our most recent research, people could not see these processes," says Dobrovitski. "Now that we can see them, it's my job as a theoretical physicist to explain what we see."

####

About Ames Laboratory
Ames Laboratory is a government-owned, contractor-operated research facility of the U.S. Department of Energy that is run by Iowa State University.

For more than 60 years, the Ames Laboratory has sought solutions to energy-related problems through the exploration of chemical, engineering, materials, mathematical and physical sciences. Established in the 1940s with the successful development of the most efficient process to produce high-purity uranium metal for atomic energy, the Lab now pursues a broad range of scientific priorities.

For more information, please click here

Contacts:
Ames Laboratory
111 TASF
Ames, IA 50011-3020
(515) 294-9557

Copyright © Ames Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Leti Presents Advances in Propagation Modeling and Antenna Design for mmWave Spectrum: Paper Is One of 15 that Leti Presented at European Conference on Antennas and Propagation March 19-24 March 23rd, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Quantum Computing

Harris & Harris Group Issues Its Financial Statements as of December 31, 2016, Posts Its Annual Shareholder Letter, And Will Host a Conference Call for Shareholders on Friday, March 17, 2017 March 15th, 2017

Sorting machine for atoms:Researchers at the University of Bonn clear a further hurdle on the path to creating quantum computers February 10th, 2017

First ever blueprint unveiled to construct a large scale quantum computer February 3rd, 2017

Chiral quantum optics: A new research field with bright perspectives January 31st, 2017

Discoveries

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Announcements

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Research partnerships

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Pulverizing e-waste is green, clean -- and cold: Rice, Indian Institute researchers use cryo-mill to turn circuit boards into separated powders March 21st, 2017

Quantum nanoscience

The speed limit for intra-chip communications in microprocessors of the future January 23rd, 2017

First experimental proof of a 70 year old physics theory: First observation of magnetic phase transition in 2-D materials, as predicted by the Nobel winner Onsager in 1943 January 6th, 2017

Quantum simulation technique yields topological soliton state in SSH model January 3rd, 2017

Diamonds are technologists' best friends: Researchers from the Lomonosov Moscow State University have grown needle- and thread-like diamonds and studied their useful properties December 30th, 2016

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project