Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Calculating a particle spectrum in lattice QCD

Christopher Thomas
Christopher Thomas

Abstract:
In a quiet office at DOE's Jefferson Lab, you can find Christopher Thomas at his desk poring over computer code. A physicist, Thomas is working to combine theory work with existing computer code to render parts of the theory of quantum chromodynamics into a computer-solvable form, called lattice QCD.

Calculating a particle spectrum in lattice QCD

Newport News, VA | Posted on May 11th, 2010

The theory of quantum chromodynamics, or QCD, describes how quarks make up protons, neutrons and other particles. Thomas is particularly interested in how QCD describes mesons, which are particles made of a quark and an anti-quark.

"I'm working on how to formulate the problem—how to write code to use lattice QCD to produce the results that we can then interpret," Thomas said. "Then we try to relate the results to experiment and models."

The oldest of three sons, Thomas was born in Bristol in the U.K. He said he has always been attracted to science and is interested in how things work.

"Originally I was attracted to aspects of chemistry, being fascinated by the structure of atoms and how they built up. But by the time I was in secondary school, I had discovered quarks," he recalled.

Thomas received his bachelor's and master's degrees from Cambridge and then completed his Ph.D. in Theoretical Particle Physics at Oxford. He came to Jefferson Lab in October 2008 as a Theory Postdoctoral Fellow.

"I have really enjoyed working with Jo Dudek, Robert Edwards and David Richards as part of the Hadron Spectrum Collaboration. We use Lattice Quantum Chromodynamics to calculate the spectrum and properties of mesons, performing calculations on the large computers here at the lab."

Thomas had only been to the U.S. once before coming to work at Jefferson Lab and has enjoyed seeing more of the country during his stay, including Seattle, Denver and the Washington, D.C. area. He says the biggest shock on arriving in the U.S. was the fact that you have to drive everywhere.

"I was much more accustomed to an environment where biking and walking were the norm," says Thomas, an avid hiker.

In addition to research, Thomas also co-organizes seminars for the Theory Center.

"I'm enjoying my time at the lab and especially the interactions with the many people who work here and visit. It's a great place to be at this time in physics."

####

About Jefferson Lab
The Thomas Jefferson National Accelerator Facility (Jefferson Lab) is funded by the U.S. Department of Energy's Office of Science with strong support from the City of Newport News and the Commonwealth of Virginia. As a user facility for scientists worldwide, its primary mission is to conduct basic research of the atom's nucleus at the quark level.

With industry and university partners, Jefferson Lab also has a derivative mission: applied research for using the Free-Electron Lasers based on technology developed at the lab to conduct physics experiments. Additionally, as a center for both basic and applied research, Jefferson Lab reaches out to help educate the next generation in science and technology.

Jefferson Lab is managed and operated for the DOE by the Jefferson Science Associates, LLC. JSA is a limited liability corporation created by Southeastern Universities Research Association and Computer Sciences Corp. specifically to manage and operate Jefferson Lab.

For more information, please click here

Copyright © Jefferson Lab

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Caught on camera -- chemical reactions 'filmed' at the single-molecule level March 22nd, 2017

Rare-earths become water-repellent only as they age March 22nd, 2017

Pulverizing e-waste is green, clean -- and cold: Rice, Indian Institute researchers use cryo-mill to turn circuit boards into separated powders March 21st, 2017

CRMGroup in Belgium uses a Deben three point bending stage in the development of new steel & coated steel products for automotive and other industrial applications March 21st, 2017

Physics

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

Research reveals novel quantum state in strange insulating materials February 14th, 2017

Sorting machine for atoms:Researchers at the University of Bonn clear a further hurdle on the path to creating quantum computers February 10th, 2017

The shape of melting in two dimensions: University of Michigan team uses Titan to explore fundamental phase transitions February 2nd, 2017

Quantum nanoscience

The speed limit for intra-chip communications in microprocessors of the future January 23rd, 2017

First experimental proof of a 70 year old physics theory: First observation of magnetic phase transition in 2-D materials, as predicted by the Nobel winner Onsager in 1943 January 6th, 2017

Quantum simulation technique yields topological soliton state in SSH model January 3rd, 2017

Diamonds are technologists' best friends: Researchers from the Lomonosov Moscow State University have grown needle- and thread-like diamonds and studied their useful properties December 30th, 2016

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project