Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > New catalyst could move fuel cell technology closer to mainstream

Balbuena views a model showing the detachment of a platinum atom (grey) from a nanocatalyst surface, driven by the presence of oxygen (red) and acid agents (yellow).
Balbuena views a model showing the detachment of a platinum atom (grey) from a nanocatalyst surface, driven by the presence of oxygen (red) and acid agents (yellow).

Abstract:
Long hampered by high manufacturing costs and durability issues, fuel cell technology could overcome those obstacles and take a significant step towards mainstream adoption thanks to a finding by a Texas A&M University chemical engineering professor.

New catalyst could move fuel cell technology closer to mainstream

College Station, TX | Posted on May 9th, 2010

Investigating the use of alternative materials as catalysts in fuel cells, Perla Balbuena, professor in the university's Artie McFerrin Department of Chemical Engineering, has found a class of composite materials that show early indications of being just as effective — and even more durable — than the costly platinum catalysts typically used in fuel cells.

The findings from her work, which is funded by the U.S. Department of Energy (DOE), appear in the January edition of the Journal of Physical Chemistry Letters.

Because of their potential as a clean source of virtually continuous energy, fuel cells are a chief area of interest to a wide variety of entities, including automobile manufacturers and the U.S. government, which has invested nearly a billion dollars in research and development of the technology.

In a basic fuel cell, Balbuena explains, the platinum takes the form of incredibly small but expensive particles that are deposited on an electrode within the fuel cell. The electrode helps to trigger complex chemical reactions that ultimately result in the conversion of oxygen and hydrogen into water and electrical energy.

Previous attempts to find more affordable alternatives for pure platinum catalysts have been unsuccessful, Balbuena says, noting that the nickel and iron-based alloy substitutes used were less durable, dissolving inside the fuel cell at a faster rate than even the traditional platinum catalysts. This dissolution occurs, Balbuena notes, because of an acidic polymeric membrane located next to the catalyst within the fuel cell.

"This membrane, although necessary, creates another problem with regard to the design of the catalyst," Balbuena says. "When nanoparticles of platinum or platinum alloys come into contact with this acid medium they can dissolve. The less ‘noble' the metal, the easier to dissolve, and in that scale, platinum is the most ‘noble' metal. When this happens, the catalyst can be negatively affected, rendering the chemical reaction less efficient.

"This is the issue we are trying to address - trying to understand the reasons behind the dissolution of these metals and the possible solutions for this problem," Balbuena says.

Looking to overcome that problem, Balbuena, an authority on materials and catalytic processes, employed computational chemistry methods to investigate viable catalysts that would show enhanced performance as well as improved durability. In contrast to experimental models, computational chemistry makes use high-performance computers to find numerical solutions of fundamental equations involving interactions among atoms and electrons. These computational results translate into finding out the best materials for the desired task. It's a pivotal first step in a process that saves scientists from costly trial-and-error approaches in the lab.

Through that approach, Balbuena and her research group at Texas A&M were able to demonstrate the potential durability and activity properties of a new "core-shell" composite material that can serve as a catalyst within a fuel cell. The material, she explains, still uses platinum but less of it, meaning it's cheaper. What's more, in its core, the material uses other key elements in a way that ensures the core particles will not segregate to the surface and dissolve in the polymeric membrane.

"In essence, we anchor less-expensive core elements that play a supportive role and let the ultra-thin platinum film on the surface exert its catalytic effect, that is to accelerate the desired reactions," Balbuena explains.

It's a finding with significant implications for the widespread adoption of fuel cell technology. The DOE's Solid State Energy Conversion Alliance estimates fuel cells will need to cost $700 per kilowatt to serve as a viable energy alternative. Current technology, however, costs nearly 10 times that amount per kilowatt.

A more affordable, durable catalyst could help lower the cost of fuel cell production, says Balbuena, who notes the composite material she has found meets a set of standard properties that DOE has set for the durability and makeup of such catalysts.

Having successfully met those criteria, the next step for the composite material, Balbuena says, is actual production and laboratory testing — aspects of the research that she is planning on exploring with potential experimental partners who have taken note of her findings and hope to begin building the new electrode catalysts in the near future.

"It is superb because as a researcher you not only want to contribute basic fundamental knowledge but you also want such knowledge triggering practical applications," Balbuena says. "When you discover something like this it is very exciting because we see that we can convert this study into something practical and useful — bringing fuel cell technology a step closer to realization."

####

About Texas A&M University
This research-intensive flagship university with 10 colleges was recently ranked first in the nation by The Washington Monthly for "tangible contributions to the public interest." U.S. News and World Report ranked Texas A&M third nationally as a "best value" among public universities. Many degree programs are ranked among the top 10 in the country.

For more information, please click here

Contacts:
Perla Balbuena
(979) 845-3375


Ryan A. Garcia
(979) 845-9237

Copyright © Texas A&M University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Nanometrics to Announce Second Quarter Financial Results on July 31, 2018 July 12th, 2018

Chemistry

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides July 13th, 2018

The Institute of Applied Physics at the University of Tsukuba near Tokyo in Japan uses Deben's ARM2 detector to better understand catalytic reaction mechanisms June 27th, 2018

Quantum Interference May Be Key to Smaller Insulators: Breakthrough could jumpstart further miniaturization of transistors June 6th, 2018

Govt.-Legislation/Regulation/Funding/Policy

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

Carbon is the new black: Researchers use carbon nanotubes to develop clothing that can double as batteries July 10th, 2018

Possible Futures

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Academic/Education

The Institute of Applied Physics at the University of Tsukuba near Tokyo in Japan uses Deben's ARM2 detector to better understand catalytic reaction mechanisms June 27th, 2018

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

SUNY Poly Professor Eric Lifshin Selected for ‘Fellow of the Microanalysis Society’ Position for Significant Contributions to Microanalysis June 13th, 2018

Grand Opening of UC Irvine Materials Research Institute (IMRI) to Spotlight JEOL Center for Nanoscale Solutions: Renowned Materials Scientists to Present at the 1st International Symposium on Advanced Microscopy and Spectroscopy (ISAMS) April 18th, 2018

Announcements

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Energy

NIST Researchers Simulate Simple Logic for Nanofluidic Computing June 30th, 2018

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

Tripling the Energy Storage of Lithium-Ion Batteries: Scientists have synthesized a new cathode material from iron fluoride that surpasses the capacity limits of traditional lithium-ion batteries June 14th, 2018

Fuel Cells

Harvesting clean hydrogen fuel through artificial photosynthesis May 3rd, 2018

A new way to find better battery materials: Design principles could point to better electrolytes for next-generation lithium batteries March 29th, 2018

Rice sleuths find metal in 'metal-free' catalysts: Study of graphene catalysts finds trace of manganese, suggests better ultrathin fuel-cell components February 26th, 2018

Study boosts hope for cheaper fuel cells: Rice University researchers show how to optimize nanomaterials for fuel-cell cathodes January 6th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project