Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > New catalyst could move fuel cell technology closer to mainstream

Balbuena views a model showing the detachment of a platinum atom (grey) from a nanocatalyst surface, driven by the presence of oxygen (red) and acid agents (yellow).
Balbuena views a model showing the detachment of a platinum atom (grey) from a nanocatalyst surface, driven by the presence of oxygen (red) and acid agents (yellow).

Abstract:
Long hampered by high manufacturing costs and durability issues, fuel cell technology could overcome those obstacles and take a significant step towards mainstream adoption thanks to a finding by a Texas A&M University chemical engineering professor.

New catalyst could move fuel cell technology closer to mainstream

College Station, TX | Posted on May 9th, 2010

Investigating the use of alternative materials as catalysts in fuel cells, Perla Balbuena, professor in the university's Artie McFerrin Department of Chemical Engineering, has found a class of composite materials that show early indications of being just as effective — and even more durable — than the costly platinum catalysts typically used in fuel cells.

The findings from her work, which is funded by the U.S. Department of Energy (DOE), appear in the January edition of the Journal of Physical Chemistry Letters.

Because of their potential as a clean source of virtually continuous energy, fuel cells are a chief area of interest to a wide variety of entities, including automobile manufacturers and the U.S. government, which has invested nearly a billion dollars in research and development of the technology.

In a basic fuel cell, Balbuena explains, the platinum takes the form of incredibly small but expensive particles that are deposited on an electrode within the fuel cell. The electrode helps to trigger complex chemical reactions that ultimately result in the conversion of oxygen and hydrogen into water and electrical energy.

Previous attempts to find more affordable alternatives for pure platinum catalysts have been unsuccessful, Balbuena says, noting that the nickel and iron-based alloy substitutes used were less durable, dissolving inside the fuel cell at a faster rate than even the traditional platinum catalysts. This dissolution occurs, Balbuena notes, because of an acidic polymeric membrane located next to the catalyst within the fuel cell.

"This membrane, although necessary, creates another problem with regard to the design of the catalyst," Balbuena says. "When nanoparticles of platinum or platinum alloys come into contact with this acid medium they can dissolve. The less ‘noble' the metal, the easier to dissolve, and in that scale, platinum is the most ‘noble' metal. When this happens, the catalyst can be negatively affected, rendering the chemical reaction less efficient.

"This is the issue we are trying to address - trying to understand the reasons behind the dissolution of these metals and the possible solutions for this problem," Balbuena says.

Looking to overcome that problem, Balbuena, an authority on materials and catalytic processes, employed computational chemistry methods to investigate viable catalysts that would show enhanced performance as well as improved durability. In contrast to experimental models, computational chemistry makes use high-performance computers to find numerical solutions of fundamental equations involving interactions among atoms and electrons. These computational results translate into finding out the best materials for the desired task. It's a pivotal first step in a process that saves scientists from costly trial-and-error approaches in the lab.

Through that approach, Balbuena and her research group at Texas A&M were able to demonstrate the potential durability and activity properties of a new "core-shell" composite material that can serve as a catalyst within a fuel cell. The material, she explains, still uses platinum but less of it, meaning it's cheaper. What's more, in its core, the material uses other key elements in a way that ensures the core particles will not segregate to the surface and dissolve in the polymeric membrane.

"In essence, we anchor less-expensive core elements that play a supportive role and let the ultra-thin platinum film on the surface exert its catalytic effect, that is to accelerate the desired reactions," Balbuena explains.

It's a finding with significant implications for the widespread adoption of fuel cell technology. The DOE's Solid State Energy Conversion Alliance estimates fuel cells will need to cost $700 per kilowatt to serve as a viable energy alternative. Current technology, however, costs nearly 10 times that amount per kilowatt.

A more affordable, durable catalyst could help lower the cost of fuel cell production, says Balbuena, who notes the composite material she has found meets a set of standard properties that DOE has set for the durability and makeup of such catalysts.

Having successfully met those criteria, the next step for the composite material, Balbuena says, is actual production and laboratory testing — aspects of the research that she is planning on exploring with potential experimental partners who have taken note of her findings and hope to begin building the new electrode catalysts in the near future.

"It is superb because as a researcher you not only want to contribute basic fundamental knowledge but you also want such knowledge triggering practical applications," Balbuena says. "When you discover something like this it is very exciting because we see that we can convert this study into something practical and useful — bringing fuel cell technology a step closer to realization."

####

About Texas A&M University
This research-intensive flagship university with 10 colleges was recently ranked first in the nation by The Washington Monthly for "tangible contributions to the public interest." U.S. News and World Report ranked Texas A&M third nationally as a "best value" among public universities. Many degree programs are ranked among the top 10 in the country.

For more information, please click here

Contacts:
Perla Balbuena
(979) 845-3375


Ryan A. Garcia
(979) 845-9237

Copyright © Texas A&M University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Get ready for NanoDays! March 5th, 2015

American Chemical Society Presidential Symposia: nanoscience, international chemistry March 5th, 2015

CiQUS researchers obtain high-quality perovskites over large areas by a chemical method March 4th, 2015

Arrowhead to Present at 2015 Barclays Global Healthcare Conference March 4th, 2015

Chemistry

Chromium-Centered Cycloparaphenylene Rings as New Tools for Making Functionalized Nanocarbons February 24th, 2015

Stretch and relax! -- Losing 1 electron switches magnetism on in dichromium February 23rd, 2015

A straightforward, rapid and continuous method to protect MOF nanocrystals against water February 9th, 2015

Research shows benefits of silicon carbide for sensors in harsh environments: Advantages identified across industries February 9th, 2015

Govt.-Legislation/Regulation/Funding/Policy

New research could lead to more efficient electrical energy storage March 4th, 2015

Energy-generating cloth could replace batteries in wearable devices March 4th, 2015

The taming of magnetic vortices: Unified theory for skyrmion-materials March 3rd, 2015

Black phosphorus is new 'wonder material' for improving optical communication March 3rd, 2015

Possible Futures

European roadmap for graphene science and technology published February 25th, 2015

Quantum research past, present and future for discussion at AAAS February 16th, 2015

World’s first compact rotary 3D printer-cum-scanner unveiled at AAAS by NTU Singapore start-up: With production funded by crowdsourcing, the first unit will be delivered to the United States in March February 16th, 2015

Nanotechnology Electric Vehicle (EV) Market Analysis Report 2015: According to Radiant Insights, Inc February 13th, 2015

Academic/Education

Get ready for NanoDays! March 5th, 2015

NanoTecNexus Launches New App for Learning About Nanotechnology—STEM Education Project Spearheaded by Interns February 26th, 2015

SUNY Poly CNSE Researchers and Corporate Partners to Present Forty Papers at Globally Recognized Lithography Conference: SUNY Poly CNSE Research Group Awarded Both ‘Best Research Paper’ and ‘Best Research Poster’ at SPIE Advanced Lithography 2015 forum February 25th, 2015

KIT Increases Commitment in Asia: DAAD Funds Two New Projects: Strategic Partnerships with Chinese Universities and Communi-cation Technologies Network February 22nd, 2015

Announcements

Get ready for NanoDays! March 5th, 2015

American Chemical Society Presidential Symposia: nanoscience, international chemistry March 5th, 2015

CiQUS researchers obtain high-quality perovskites over large areas by a chemical method March 4th, 2015

Arrowhead to Present at 2015 Barclays Global Healthcare Conference March 4th, 2015

Energy

CiQUS researchers obtain high-quality perovskites over large areas by a chemical method March 4th, 2015

UC research partnership explores how to best harness solar power March 2nd, 2015

In quest for better lithium-air batteries, chemists boost carbon's stability: Nanoparticle coatings improve stability, cyclability of '3DOm' carbon February 25th, 2015

New nanowire structure absorbs light efficiently: Dual-type nanowire arrays can be used in applications such as LEDs and solar cells February 25th, 2015

Fuel Cells

CiQUS researchers obtain high-quality perovskites over large areas by a chemical method March 4th, 2015

Researchers turn unzipped nanotubes into possible alternative for platinum: Aerogel catalyst shows promise for fuel cells March 2nd, 2015

Review highlights the potential for graphene and other 2D crystals in the energy sector February 4th, 2015

New concept of fuel cell for efficiency and environment: It grasps both performance efficiency and removal of toxic heavy metal ions in direct methanol fuel cells January 5th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE