Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > New catalyst could move fuel cell technology closer to mainstream

Balbuena views a model showing the detachment of a platinum atom (grey) from a nanocatalyst surface, driven by the presence of oxygen (red) and acid agents (yellow).
Balbuena views a model showing the detachment of a platinum atom (grey) from a nanocatalyst surface, driven by the presence of oxygen (red) and acid agents (yellow).

Abstract:
Long hampered by high manufacturing costs and durability issues, fuel cell technology could overcome those obstacles and take a significant step towards mainstream adoption thanks to a finding by a Texas A&M University chemical engineering professor.

New catalyst could move fuel cell technology closer to mainstream

College Station, TX | Posted on May 9th, 2010

Investigating the use of alternative materials as catalysts in fuel cells, Perla Balbuena, professor in the university's Artie McFerrin Department of Chemical Engineering, has found a class of composite materials that show early indications of being just as effective — and even more durable — than the costly platinum catalysts typically used in fuel cells.

The findings from her work, which is funded by the U.S. Department of Energy (DOE), appear in the January edition of the Journal of Physical Chemistry Letters.

Because of their potential as a clean source of virtually continuous energy, fuel cells are a chief area of interest to a wide variety of entities, including automobile manufacturers and the U.S. government, which has invested nearly a billion dollars in research and development of the technology.

In a basic fuel cell, Balbuena explains, the platinum takes the form of incredibly small but expensive particles that are deposited on an electrode within the fuel cell. The electrode helps to trigger complex chemical reactions that ultimately result in the conversion of oxygen and hydrogen into water and electrical energy.

Previous attempts to find more affordable alternatives for pure platinum catalysts have been unsuccessful, Balbuena says, noting that the nickel and iron-based alloy substitutes used were less durable, dissolving inside the fuel cell at a faster rate than even the traditional platinum catalysts. This dissolution occurs, Balbuena notes, because of an acidic polymeric membrane located next to the catalyst within the fuel cell.

"This membrane, although necessary, creates another problem with regard to the design of the catalyst," Balbuena says. "When nanoparticles of platinum or platinum alloys come into contact with this acid medium they can dissolve. The less ‘noble' the metal, the easier to dissolve, and in that scale, platinum is the most ‘noble' metal. When this happens, the catalyst can be negatively affected, rendering the chemical reaction less efficient.

"This is the issue we are trying to address - trying to understand the reasons behind the dissolution of these metals and the possible solutions for this problem," Balbuena says.

Looking to overcome that problem, Balbuena, an authority on materials and catalytic processes, employed computational chemistry methods to investigate viable catalysts that would show enhanced performance as well as improved durability. In contrast to experimental models, computational chemistry makes use high-performance computers to find numerical solutions of fundamental equations involving interactions among atoms and electrons. These computational results translate into finding out the best materials for the desired task. It's a pivotal first step in a process that saves scientists from costly trial-and-error approaches in the lab.

Through that approach, Balbuena and her research group at Texas A&M were able to demonstrate the potential durability and activity properties of a new "core-shell" composite material that can serve as a catalyst within a fuel cell. The material, she explains, still uses platinum but less of it, meaning it's cheaper. What's more, in its core, the material uses other key elements in a way that ensures the core particles will not segregate to the surface and dissolve in the polymeric membrane.

"In essence, we anchor less-expensive core elements that play a supportive role and let the ultra-thin platinum film on the surface exert its catalytic effect, that is to accelerate the desired reactions," Balbuena explains.

It's a finding with significant implications for the widespread adoption of fuel cell technology. The DOE's Solid State Energy Conversion Alliance estimates fuel cells will need to cost $700 per kilowatt to serve as a viable energy alternative. Current technology, however, costs nearly 10 times that amount per kilowatt.

A more affordable, durable catalyst could help lower the cost of fuel cell production, says Balbuena, who notes the composite material she has found meets a set of standard properties that DOE has set for the durability and makeup of such catalysts.

Having successfully met those criteria, the next step for the composite material, Balbuena says, is actual production and laboratory testing — aspects of the research that she is planning on exploring with potential experimental partners who have taken note of her findings and hope to begin building the new electrode catalysts in the near future.

"It is superb because as a researcher you not only want to contribute basic fundamental knowledge but you also want such knowledge triggering practical applications," Balbuena says. "When you discover something like this it is very exciting because we see that we can convert this study into something practical and useful — bringing fuel cell technology a step closer to realization."

####

About Texas A&M University
This research-intensive flagship university with 10 colleges was recently ranked first in the nation by The Washington Monthly for "tangible contributions to the public interest." U.S. News and World Report ranked Texas A&M third nationally as a "best value" among public universities. Many degree programs are ranked among the top 10 in the country.

For more information, please click here

Contacts:
Perla Balbuena
(979) 845-3375


Ryan A. Garcia
(979) 845-9237

Copyright © Texas A&M University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Arrowhead Pharmaceuticals Files for Regulatory Clearance to Begin Phase 1/2 Study of ARC-521 April 28th, 2016

The Translational Research Center at the University Hospital of Erlangen in Germany uses the ZetaView from Particle Metrix to quantify extracellular vesicles such as exosomes April 28th, 2016

Chemistry

Adding some salt to the recipe for energy storage materials: Researchers use common table salt as growth template April 22nd, 2016

NRL reveals novel uniform coating process of p-ALD April 21st, 2016

Team builds first quantum cascade laser on silicon: Eliminates the need for an external light source for mid-infrared silicon photonic devices or photonic circuits April 21st, 2016

McMaster researchers achieve a first by coaxing molecules into assembling themselves: Major advance creates the potential for useful new materials April 21st, 2016

Govt.-Legislation/Regulation/Funding/Policy

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Nanoparticles hold promise as double-edged sword against genital herpes April 28th, 2016

Arrowhead Pharmaceuticals Files for Regulatory Clearance to Begin Phase 1/2 Study of ARC-521 April 28th, 2016

Possible Futures

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Researchers create a first frequency comb of time-bin entangled qubits: Discovery is a significant step toward multi-channel quantum communication and higher capacity quantum computers April 28th, 2016

Hybrid nanoantennas -- next-generation platform for ultradense data recording April 28th, 2016

Academic/Education

JPK reports on the use of a NanoWizard AFM system at the University of Kaiserslautern to study the interaction of bacteria with microstructured surfaces April 28th, 2016

The Ottawa Hospital Research Institute uses the ZetaView from Particle Metrix to study membrane microparticles as potential biomarkers for underlying diseases April 12th, 2016

FEI Partners with Five Pharmaceutical Companies, the Medical Research Council and the University of Cambridge to form Cryo-EM Research Consortium April 5th, 2016

SUNY Poly, in Collaboration with the George Washington School of Medicine and Health Sciences and Stony Brook University, Demonstrates Pioneering Method to Visualize and Identify Engineered Nanoparticles in Tissue March 25th, 2016

Announcements

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Arrowhead Pharmaceuticals Files for Regulatory Clearance to Begin Phase 1/2 Study of ARC-521 April 28th, 2016

The Translational Research Center at the University Hospital of Erlangen in Germany uses the ZetaView from Particle Metrix to quantify extracellular vesicles such as exosomes April 28th, 2016

Energy

NREL finds nanotube semiconductors well-suited for PV systems April 27th, 2016

Researchers create artificial protein to control assembly of buckyballs April 27th, 2016

Flipping a chemical switch helps perovskite solar cells beat the heat April 26th, 2016

New spin Seebeck thermoelectric device with higher conversion efficiency created April 26th, 2016

Fuel Cells

Ruthenium nanoframes open the doors to better catalysts April 4th, 2016

Saving sunshine for a rainy day: New catalyst offers efficient storage of green energy: Team led by U of T Engineering designs world's most efficient catalyst for storing energy as hydrogen by splitting water molecules March 28th, 2016

Carbon leads the way in clean energy: Groundbreaking research at Griffith University is leading the way in clean energy, with the use of carbon as a way to deliver energy using hydrogen March 23rd, 2016

Physicists prove energy input predicts molecular behavior: Theoretical proof could lead to more reliable nanomachines March 22nd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic