Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > News > Blingtronics: Diamonds are a geek's best friend

April 28th, 2010

Blingtronics: Diamonds are a geek's best friend

Abstract:
It's like walking into a bank vault. Pass codes secure the doors. The walls and floor are made of reinforced concrete up to 2 metres thick - all built on solid sandstone. The ventilation ducts have automatic shut-offs. Not even cellphone signals can sneak in.

All this might seem fitting given that the place houses diamonds by the hundred. Yet this is no vault. It's a lab in the Centre for Nanoscience and Quantum Information at the University of Bristol, UK, and the diamonds stored here are each no bigger than a speck of dust. Diamonds this size might not interest a bank robber, but they are turning out to be a physicist's best friend.

And it's not just diamonds. Gold and silver, too, are acquiring new allure in the lab. These materials' superlative hardness, lustre and resistance to corrosion have been prized for centuries, but reduce this stuff to the nanoscale and other characteristics emerge; valuable properties which promise to transform the way we build electrical gadgets of every kind. Welcome to the shiny new world of "blingtronics".

Unravelling the remarkable riches of this nano-world takes an exceptionally steady hand - which is why the Bristol lab is so solidly built. Here physicist Neil Fox spends his day manipulating delicate films of diamond as thin as a human hair. The experiments are so sensitive that even the faintest vibration could spell failure.

Fox aims to turn these diamond films into a new kind of solar cell, one that generates electricity by absorbing heat rather than visible-light wavelengths.

Source:
newscientist.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Carbon nanoballs can greatly contribute to sustainable energy supply January 27th, 2015

The laser pulse that gets shorter all by itself: Ultrashort laser pulses have become an indispensable tool for atomic and molecular research; A new technology makes creating short infrared pulses easy and cheap January 27th, 2015

New pathway to valleytronics January 27th, 2015

Stomach acid-powered micromotors get their first test in a living animal January 27th, 2015

Academic/Education

Rice's Naomi Halas to direct Smalley Institute: Optics pioneer will lead Rice's multidisciplinary science institute January 15th, 2015

SUNY Board Appoints Dr. Alain Kaloyeros as Founding President of SUNY Polytechnic Institute January 13th, 2015

CNSE's Smart System Technology & Commercialization Center Successfully Recertifies as ISO 9001:2008 January 12th, 2015

SUNY Poly Now Accepting Applications to the Colleges of Nanoscale Science and Engineering for Fall 2015: Full Scholarships Available to Incoming CNSE Students January 7th, 2015

Materials/Metamaterials

Industrial Nanotech, Inc. Announces New OEM Customer January 27th, 2015

Chromium-centered cycloparaphenylene rings for making functionalized nanocarbons January 26th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

Toyocolor to Launch New Carbon Nanotube Materials at nano tech 2015 January 24th, 2015

Announcements

Industrial Nanotech, Inc. Announces New OEM Customer January 27th, 2015

Carbon nanoballs can greatly contribute to sustainable energy supply January 27th, 2015

The laser pulse that gets shorter all by itself: Ultrashort laser pulses have become an indispensable tool for atomic and molecular research; A new technology makes creating short infrared pulses easy and cheap January 27th, 2015

New pathway to valleytronics January 27th, 2015

Energy

Carbon nanoballs can greatly contribute to sustainable energy supply January 27th, 2015

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

Iranian Researchers Boost Solar Cells Efficiency Using Anti-Aggregates January 26th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

Solar/Photovoltaic

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

Iranian Researchers Boost Solar Cells Efficiency Using Anti-Aggregates January 26th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

New technique helps probe performance of organic solar cell materials January 23rd, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE