Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Bionanotechnology has new face, world-class future at Florida State

Steven Lenhert (photo: Michele Edmunds, FSU Photo Lab)
Steven Lenhert (photo: Michele Edmunds, FSU Photo Lab)

Abstract:
Imagine the marriage of hard metals or semiconductors to soft organic or biological products. Picture the strange, wonderful offspring — hybrid materials never conceived by Mother Nature.

The applications in medicine and manufacturing are staggering, says biologist Steven Lenhert, the newest faculty face of nanoscience at The Florida State University.

By Libby Fairhurst

Bionanotechnology has new face, world-class future at Florida State

Tallahassee, FL | Posted on April 20th, 2010

How about a mobile phone fitted with a "lab on a chip" that can diagnose illness? That and much more are real possibilities, according to Lenhert.

"Nanotechnology is already saving lives, and will be crucial to the sustainability of life as we know it on Earth," he said.

Lenhert is the lead author of a groundbreaking paper published in the April 2010 edition of Nature Nanotechnology — the discipline's premier journal.

At age 32, he is internationally recognized for his innovative work in the evolving field of bionanotechnology — the union of biology and nanotechnology — and a related process, Dip-Pen Nanolithography (DPN), which uses a sharp, pen-like device and "ink" to "write" nanoscale patterns on solid surfaces. Both are capable of producing materials with enormous potential not only for diagnostic applications in health care but also for virtually any field that uses materials, from tissue engineering to drug discovery to computer chip fabrication.

In other words, it is big-deal technology on a nanoscale. Nanotechnology encompasses objects that measure just 100 nanometers or less in at least one of their dimensions. One nanometer equals a billionth of a meter.

"Think of one nanometer as the length that a hair grows in one second," Lenhert said.

Florida State hired Lenhert to further enhance the interdisciplinary cluster of faculty who form the Integrative NanoScience Institute (INSI) — a key part of the university's ambitious Pathways of Excellence initiative. His cutting-edge work in nanobiology is expected to serve as an ideal complement to the materials science and engineering research already underway there.

Together, they mean to make the institute a world-class bionanotechnology center.

As an INSI member, Lenhert will collaborate on the Institute's cutting-edge research with distinguished faculty from cell and molecular biology, chemistry and biochemistry, materials science, chemical and biomedical engineering, and physics.

The paper he and coworkers published ("Lipid multilayer gratings") in Nature Nanotechnology describes a DPN-based technique he devised at his former institutions, Germany's University of Muenster and Karlsruhe Institute of Technology. The technique has promising biological applications. It enables the color-coded detection of various molecules through diffraction of light and thin, nanoscale layers of lipids.

"We ended up with a fundamentally new class of material — in effect, a biometamaterial, which is a biomaterial that doesn't exist in nature," Lenhert said.

"It acts as a biosensor, which responds to the presence of a biological agent by combining a sensitive biological element with a physical device," he said. "Our biosensor actually makes the physical device out of the biological element itself.

"The closest real-world application for this material is in medical diagnostics," Lenhert said. "The idea would be to have a portable, affordable and disposable chip that could allow your mobile phone to diagnose medical conditions that currently require a visit to a doctor and samples being sent to a laboratory. This concept is known as 'lab on a chip,' and it could analyze, say, blood or urine. A home pregnancy test is a similar example that already works, but other kinds of tests still need actual, advanced laboratories."

Lenhert is a chess master who plays competitively, when he's not in his laboratory. Born in Salt Lake City, he received his doctoral degree in 2004 from the University of Muenster. Until recently, he was leading a nanoscience research group in Germany. Then, at a conference in 2009, he came across a Florida State flyer about the Integrated NanoScience Institute.

"It contained what I considered to be the perfect description of my scientific motivation," Lenhert said. "Now, here I am. What's most exciting and impressive to me is the way all the INSI members, from various FSU departments, suddenly feel right at home together because of the word 'nanoscience.'

"As a graduate student I was lucky to be able to work as a bridge between different departments, including biology, medicine, chemistry and physics," he said. "I realized that a lot of the solutions to a particular problem might already exist just across a street. That's why I like the INSI cluster at Florida State, because it is based on this principle."

"Steve Lenhert is not a traditional biologist — he is doing tomorrow's biology today," said FSU Professor Bryant Chase, chairman of the biological science department.

"His training in nanotechnology as well as biology allows him to answer biological questions through novel experiments that could not have been performed before," Chase said. "He is designing new tools with unprecedented applications in science and medicine. He also participates in an initiative called 'NanoProfessor,' which teaches faculty how to make nanoscience more accessible and engaging for undergraduate students. Steve is a 'wunderkind.'"

####

For more information, please click here

Copyright © Florida State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Surfing a wake of light: Researchers observe and control light wakes for the first time July 6th, 2015

Tel Aviv/Tsinghua University project uses crowd computing to improve water filtration: The research, a product of the new TAU-Tsinghua XIN Center, was conducted by 150,000 volunteers at IBM's World Community Grid July 6th, 2015

Transition from 3 to 2 dimensions increases conduction, MIPT scientists discover July 6th, 2015

A Stretchy Mesh Heater for Sore Muscles July 6th, 2015

Possible Futures

BBC World Service to broadcast Forum discussion on graphene July 6th, 2015

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Harris & Harris Group Portfolio Company D-Wave Systems Announces 1,000 Qubit Processor and is Discussed in the Economist June 23rd, 2015

Global Nanoclays Market Analysis, Size, Growth, Trends And Segment Forecasts, 2015 To 2022: Grand View Research, Inc June 15th, 2015

Academic/Education

Oxford Instruments’ TritonXL Cryofree dilution refrigerator selected for the Oxford NQIT Quantum Technology Hub project June 30th, 2015

Rice University boots up powerful microscopes: New electron microscopes will capture images at subnanometer resolution June 29th, 2015

Six top Catalan research centres constitute ‘The Barcelona Institute of Science and Technology’ to pursue a joint scientific endeavour June 27th, 2015

Lancaster University revolutionary quantum technology research receives funding boost June 22nd, 2015

Nanomedicine

A Stretchy Mesh Heater for Sore Muscles July 6th, 2015

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Iranian Scientists Find Simple, Economic Method to Synthesize Antibacterial Nanoparticles July 2nd, 2015

Sensors

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

New micro-supercapacitor structure inspired by the intricate design of leaves: A team of scientists in Korea has devised a new method for making a graphene film for supercapacitors July 2nd, 2015

Carnegie Mellon chemists characterize 3-D macroporous hydrogels: Methods will allow researchers to develop new 'smart' materials June 30th, 2015

Announcements

Surfing a wake of light: Researchers observe and control light wakes for the first time July 6th, 2015

Tel Aviv/Tsinghua University project uses crowd computing to improve water filtration: The research, a product of the new TAU-Tsinghua XIN Center, was conducted by 150,000 volunteers at IBM's World Community Grid July 6th, 2015

Transition from 3 to 2 dimensions increases conduction, MIPT scientists discover July 6th, 2015

A Stretchy Mesh Heater for Sore Muscles July 6th, 2015

Nanobiotechnology

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Engineering the world’s smallest nanocrystal July 2nd, 2015

Nanometric sensor designed to detect herbicides can help diagnose multiple sclerosis June 23rd, 2015

Newly-Developed Biosensor in Iran Detects Cocaine Addiction June 23rd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project