Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Three-Dimensional Cell Culture: Making Cells Feel Right at Home

Abstract:
A team of Houston scientists has unveiled a new technique that uses magnetic nanobeads to levitate cells, allowing them to grow into three-dimensional structures.

Three-Dimensional Cell Culture: Making Cells Feel Right at Home

Bethesda, MD | Posted on April 20th, 2010

This technological leap from the flat Petri dish has the potential for significant impact on cancer research, where recent studies have demonstrated that cancer cells growing in two-dimensional sheets are not the optimal systems for studying potential anticancer agents. In fact, techniques for growing cells in three-dimensional structures could save millions of dollars in drug-testing costs.

Renata Pasqualini and Wadih Arap, of the University of Texas M.D. Anderson Cancer Center, and Thomas Killian, of Rice University, led this study, which was reported in the journal Nature Nanotechnology. Dr. Pasqualini is also a member of the University of Texas Health Science Center at Houston Physical Sciences-Oncology Center, one of 12 Centers funded by the National Cancer Institute to foster the development of innovative ideas and new fields of study based on knowledge of the biological and physical laws and principles that define both normal and tumor systems.

The three-dimensional technique is easy enough for most labs to set up immediately. It uses magnetic nanoparticles to levitate cells while they divide and grow. Compared with cell cultures grown on flat surfaces, the three-dimensional cell cultures tend to form tissues that more closely resemble those inside the body. "There's a big push right now to find ways to grow cells in three-dimensional because the body is three-dimensional, and cultures that more closely resemble native tissue are expected to provide better results for preclinical drug tests," said Dr. Killian. "If you could improve the accuracy of early drug screenings by just 10 percent, it's estimated you could save as much as $100 million per drug." For cancer research, the "invisible scaffold" created by the magnetic field goes beyond its potential for producing cell cultures that are more reminiscent of real tumors, which itself would be an important advance, added Dr. Arap.

To make cells levitate, the research team modified a combination of gold nanoparticles and engineered viral particles called "phage" that was developed in the lab of Drs. Arap and Pasqualini. This targeted "nanoshuttle" can deliver payloads to specific organs or tissues.

"A logical next step for us will be to use this additional magnetic property in targeted ways to explore possible applications in the imaging and treatment of tumors," Dr. Arap said.

In the current study, the researchers added magnetic iron oxide nanoparticles to a gel that contains phage. When cells are added to the gel, the phage causes the particles to be absorbed into cells over a few hours. The gel is then washed away, and the nanoparticle-loaded cells are placed in a Petri dish filled with a liquid that promotes cell growth and division. By placing a coin-sized magnet atop the dish's lid, the researchers found that they could lift the cells off the bottom of the dish, concentrate them, and allow them to grow and divide while they were suspended in the liquid. In a key experiment using glioblastoma cells, the investigators found that cells grown in the three-dimensional medium produced proteins that were similar to those produced by gliobastoma tumors in mice, while cells grown in two dimensions did not show this similarity.

This work, which was supported in part by the National Cancer Institute, is detailed in a paper titled, "Three-dimensional tissue culture based on magnetic cell levitation." Investigators from Nano3D Biosciences, which has licensed this technology for commercial development, also participated in this study. An abstract of this paper is available at the journal's Web site.

####

About NCI Alliance for Nanotechnology in Cancer
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Copyright © NCI Alliance for Nanotechnology in Cancer

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

Zenosense, Inc. July 29th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

Seeing is bead-lieving: Rice University scientists create model 'bead-spring' chains with tunable properties July 28th, 2014

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

Possible Futures

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Surface Characteristics Influence Cellular Growth on Semiconductor Material March 12th, 2014

Academic/Education

Haydale Announces Collaboration Agreement with Swansea University’s Welsh Centre for Printing and Coatings (WCPC) July 12th, 2014

STFC takes delivery of the 100th Hitachi Tabletop SEM in the UK July 3rd, 2014

Innovation Management and the Emergence of the Nanobiotechnology Industry July 1st, 2014

Albany NanoCollege Faculty Member Selected as Editor-in-Chief of the Prestigious Journal of Electronic Materials July 1st, 2014

Nanomedicine

Zenosense, Inc. July 29th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

FEI adds Phase Plate Technology and Titan Halo TEM to its Structural Biology Product Portfolio: New solutions provide the high-quality imaging and contrast necessary to analyze the 3D structure of molecules and molecular complexes July 28th, 2014

New imaging agent provides better picture of the gut July 25th, 2014

Announcements

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

Zenosense, Inc. July 29th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

Nanobiotechnology

Harris & Harris Group Invests in Unique NYC Biotech Accelerator July 29th, 2014

Seeing is bead-lieving: Rice University scientists create model 'bead-spring' chains with tunable properties July 28th, 2014

FEI adds Phase Plate Technology and Titan Halo TEM to its Structural Biology Product Portfolio: New solutions provide the high-quality imaging and contrast necessary to analyze the 3D structure of molecules and molecular complexes July 28th, 2014

Scientists Test Nanoparticle "Alarm Clock" to Awaken Immune Systems Put to Sleep by Cancer July 25th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE