Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Three-Dimensional Cell Culture: Making Cells Feel Right at Home

Abstract:
A team of Houston scientists has unveiled a new technique that uses magnetic nanobeads to levitate cells, allowing them to grow into three-dimensional structures.

Three-Dimensional Cell Culture: Making Cells Feel Right at Home

Bethesda, MD | Posted on April 20th, 2010

This technological leap from the flat Petri dish has the potential for significant impact on cancer research, where recent studies have demonstrated that cancer cells growing in two-dimensional sheets are not the optimal systems for studying potential anticancer agents. In fact, techniques for growing cells in three-dimensional structures could save millions of dollars in drug-testing costs.

Renata Pasqualini and Wadih Arap, of the University of Texas M.D. Anderson Cancer Center, and Thomas Killian, of Rice University, led this study, which was reported in the journal Nature Nanotechnology. Dr. Pasqualini is also a member of the University of Texas Health Science Center at Houston Physical Sciences-Oncology Center, one of 12 Centers funded by the National Cancer Institute to foster the development of innovative ideas and new fields of study based on knowledge of the biological and physical laws and principles that define both normal and tumor systems.

The three-dimensional technique is easy enough for most labs to set up immediately. It uses magnetic nanoparticles to levitate cells while they divide and grow. Compared with cell cultures grown on flat surfaces, the three-dimensional cell cultures tend to form tissues that more closely resemble those inside the body. "There's a big push right now to find ways to grow cells in three-dimensional because the body is three-dimensional, and cultures that more closely resemble native tissue are expected to provide better results for preclinical drug tests," said Dr. Killian. "If you could improve the accuracy of early drug screenings by just 10 percent, it's estimated you could save as much as $100 million per drug." For cancer research, the "invisible scaffold" created by the magnetic field goes beyond its potential for producing cell cultures that are more reminiscent of real tumors, which itself would be an important advance, added Dr. Arap.

To make cells levitate, the research team modified a combination of gold nanoparticles and engineered viral particles called "phage" that was developed in the lab of Drs. Arap and Pasqualini. This targeted "nanoshuttle" can deliver payloads to specific organs or tissues.

"A logical next step for us will be to use this additional magnetic property in targeted ways to explore possible applications in the imaging and treatment of tumors," Dr. Arap said.

In the current study, the researchers added magnetic iron oxide nanoparticles to a gel that contains phage. When cells are added to the gel, the phage causes the particles to be absorbed into cells over a few hours. The gel is then washed away, and the nanoparticle-loaded cells are placed in a Petri dish filled with a liquid that promotes cell growth and division. By placing a coin-sized magnet atop the dish's lid, the researchers found that they could lift the cells off the bottom of the dish, concentrate them, and allow them to grow and divide while they were suspended in the liquid. In a key experiment using glioblastoma cells, the investigators found that cells grown in the three-dimensional medium produced proteins that were similar to those produced by gliobastoma tumors in mice, while cells grown in two dimensions did not show this similarity.

This work, which was supported in part by the National Cancer Institute, is detailed in a paper titled, "Three-dimensional tissue culture based on magnetic cell levitation." Investigators from Nano3D Biosciences, which has licensed this technology for commercial development, also participated in this study. An abstract of this paper is available at the journal's Web site.

####

About NCI Alliance for Nanotechnology in Cancer
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Copyright © NCI Alliance for Nanotechnology in Cancer

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Govt.-Legislation/Regulation/Funding/Policy

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Possible Futures

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Academic/Education

Oxford Instruments congratulates Lancaster University for inaugurating the IsoLab, built for studying quantum systems June 20th, 2017

The 2017 Winners for Generation Nano June 8th, 2017

MIT Energy Initiative awards 10 seed fund grants for early-stage energy research May 4th, 2017

Bar-Ilan University to set up quantum research center May 1st, 2017

Nanomedicine

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Learning with light: New system allows optical “deep learning”: Neural networks could be implemented more quickly using new photonic technology June 12th, 2017

Mussels add muscle to biocompatible fibers: Rice University chemists develop hydrogel strings using compound found in sea creatures June 9th, 2017

Making vessels leaky on demand could aid drug delivery:Rice University scientists use magnets and nanoparticles to open, close gaps in blood vessels June 8th, 2017

Announcements

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Nanobiotechnology

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Mussels add muscle to biocompatible fibers: Rice University chemists develop hydrogel strings using compound found in sea creatures June 9th, 2017

Making vessels leaky on demand could aid drug delivery:Rice University scientists use magnets and nanoparticles to open, close gaps in blood vessels June 8th, 2017

Nanobiotix's promising data from Phase I/II head and neck cancer trial presented at ASCO June 5th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project