Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Three-Dimensional Cell Culture: Making Cells Feel Right at Home

Abstract:
A team of Houston scientists has unveiled a new technique that uses magnetic nanobeads to levitate cells, allowing them to grow into three-dimensional structures.

Three-Dimensional Cell Culture: Making Cells Feel Right at Home

Bethesda, MD | Posted on April 20th, 2010

This technological leap from the flat Petri dish has the potential for significant impact on cancer research, where recent studies have demonstrated that cancer cells growing in two-dimensional sheets are not the optimal systems for studying potential anticancer agents. In fact, techniques for growing cells in three-dimensional structures could save millions of dollars in drug-testing costs.

Renata Pasqualini and Wadih Arap, of the University of Texas M.D. Anderson Cancer Center, and Thomas Killian, of Rice University, led this study, which was reported in the journal Nature Nanotechnology. Dr. Pasqualini is also a member of the University of Texas Health Science Center at Houston Physical Sciences-Oncology Center, one of 12 Centers funded by the National Cancer Institute to foster the development of innovative ideas and new fields of study based on knowledge of the biological and physical laws and principles that define both normal and tumor systems.

The three-dimensional technique is easy enough for most labs to set up immediately. It uses magnetic nanoparticles to levitate cells while they divide and grow. Compared with cell cultures grown on flat surfaces, the three-dimensional cell cultures tend to form tissues that more closely resemble those inside the body. "There's a big push right now to find ways to grow cells in three-dimensional because the body is three-dimensional, and cultures that more closely resemble native tissue are expected to provide better results for preclinical drug tests," said Dr. Killian. "If you could improve the accuracy of early drug screenings by just 10 percent, it's estimated you could save as much as $100 million per drug." For cancer research, the "invisible scaffold" created by the magnetic field goes beyond its potential for producing cell cultures that are more reminiscent of real tumors, which itself would be an important advance, added Dr. Arap.

To make cells levitate, the research team modified a combination of gold nanoparticles and engineered viral particles called "phage" that was developed in the lab of Drs. Arap and Pasqualini. This targeted "nanoshuttle" can deliver payloads to specific organs or tissues.

"A logical next step for us will be to use this additional magnetic property in targeted ways to explore possible applications in the imaging and treatment of tumors," Dr. Arap said.

In the current study, the researchers added magnetic iron oxide nanoparticles to a gel that contains phage. When cells are added to the gel, the phage causes the particles to be absorbed into cells over a few hours. The gel is then washed away, and the nanoparticle-loaded cells are placed in a Petri dish filled with a liquid that promotes cell growth and division. By placing a coin-sized magnet atop the dish's lid, the researchers found that they could lift the cells off the bottom of the dish, concentrate them, and allow them to grow and divide while they were suspended in the liquid. In a key experiment using glioblastoma cells, the investigators found that cells grown in the three-dimensional medium produced proteins that were similar to those produced by gliobastoma tumors in mice, while cells grown in two dimensions did not show this similarity.

This work, which was supported in part by the National Cancer Institute, is detailed in a paper titled, "Three-dimensional tissue culture based on magnetic cell levitation." Investigators from Nano3D Biosciences, which has licensed this technology for commercial development, also participated in this study. An abstract of this paper is available at the journal's Web site.

####

About NCI Alliance for Nanotechnology in Cancer
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Copyright © NCI Alliance for Nanotechnology in Cancer

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

University of Tehran Researchers Invent Non-Enzyme Sensor to Detect Blood Sugar April 23rd, 2014

Gold nanoparticles help target, quantify breast cancer gene segments in a living cell April 23rd, 2014

Study finds long-term survival of human neural stem cells transplanted into primate brain April 23rd, 2014

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

Govt.-Legislation/Regulation/Funding/Policy

Gold nanoparticles help target, quantify breast cancer gene segments in a living cell April 23rd, 2014

Atomic switcheroo explains origins of thin-film solar cell mystery April 23rd, 2014

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

Guo Lab Shows Potential of RNA as Heat-resistant Polymer Material for Nanoarchitectures April 23rd, 2014

Possible Futures

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Surface Characteristics Influence Cellular Growth on Semiconductor Material March 12th, 2014

The "Tipping Point" February 12th, 2014

Academic/Education

Global leader in solar cell manufacturing eyes New York for major expansion outside of Japan: CNSE and Solar Frontier Explore $700 Million Investment, Job Creation in New York State April 22nd, 2014

University of Waterloo Visits China to Strengthen Bonds With Research Partners April 21st, 2014

Director Wally Pfister joins UC Berkeley neuroengineers to discuss the science behind ‘Transcendence’ April 7th, 2014

First annual science week highlights STEM pipeline and partnerships: UB, SUNY Buffalo State and ECC team up with the City of Buffalo and its schools for April 7-11 events April 3rd, 2014

Nanomedicine

University of Tehran Researchers Invent Non-Enzyme Sensor to Detect Blood Sugar April 23rd, 2014

Gold nanoparticles help target, quantify breast cancer gene segments in a living cell April 23rd, 2014

QuantuMDx announce prototype handheld lab for 15 minute malaria diagnosis and drug resistance testing April 23rd, 2014

Study finds long-term survival of human neural stem cells transplanted into primate brain April 23rd, 2014

Announcements

Characterizing inkjet inks: Malvern Instruments presents new rheological research April 23rd, 2014

NanoSafe, Inc. announces the addition of the Labconco Protector® Glove Box to its NanoSafe Tested™ registry April 23rd, 2014

Study finds long-term survival of human neural stem cells transplanted into primate brain April 23rd, 2014

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

Nanobiotechnology

University of Tehran Researchers Invent Non-Enzyme Sensor to Detect Blood Sugar April 23rd, 2014

Gold nanoparticles help target, quantify breast cancer gene segments in a living cell April 23rd, 2014

Guo Lab Shows Potential of RNA as Heat-resistant Polymer Material for Nanoarchitectures April 23rd, 2014

Cloaked DNA nanodevices survive pilot mission: Successful foray opens door to virus-like DNA nanodevices that could diagnose diseased tissues and manufacture drugs to treat them April 22nd, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE