Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > NIST Detector Counts Photons With 99 Percent Efficiency

NIST physicist Sae Woo Nam works with refrigeration equipment used to cool photon detectors to nearly absolute zero. His team’s efforts have created devices that can detect single photons with 99 percent efficiency. Credit: NIST
NIST physicist Sae Woo Nam works with refrigeration equipment used to cool photon detectors to nearly absolute zero. His team’s efforts have created devices that can detect single photons with 99 percent efficiency. Credit: NIST

Abstract:
Scientists at the National Institute of Standards and Technology (NIST) have developed* the world's most efficient single photon detector, which is able to count individual particles of light traveling through fiber optic cables with roughly 99 percent efficiency. The team's efforts could bring improvements to secure electronic communication, advanced quantum computation and the measurement of optical power.

NIST Detector Counts Photons With 99 Percent Efficiency

Gaithersburg, MD | Posted on April 17th, 2010

Using essentially the same technology that permitted them to achieve 88 percent detection efficiency five years ago,** the team has enhanced its ability to detect photons largely by improving the alignment of the detector and the optical fibers that guide photons into it. The basic principle of the detector is to use a superconductor as an ultra-sensitive thermometer. Each individual photon hitting the detector raises the temperature—and increases electrical resistance—by a minute amount, which the instrument registers as the presence of a photon.

According to team member Sae Woo Nam, the advantage of this type of single photon detector is that the new detector design not only measures lower levels of light than have ever been possible, but does so with great accuracy.

"When these detectors indicate they've spotted a photon, they're trustworthy. They don't give false positives," says Nam, a physicist with NIST's Optoelectronics division. "Other types of detectors have really high gain so they can measure a single photon, but their noise levels are such that occasionally a noise glitch is mistakenly identified as a photon. This causes an error in the measurement. Reducing these errors is really important for those who are doing calculations or communications."

The ability to count individual photons is valuable to designers of certain types of quantum computers as well as scientists engaged in quantum optical experiments, which concern exotic states of light that cannot be described by classical physics. But one of the most promising potential applications of a high-efficiency photon detector is a way to secure long-distance data transmission against unwanted interception. A detector that could recognize that a photon forming part of a transmission was missing would be a substantial defense against information theft.

The team has optimized the detection for 810 nanometers—an infrared wavelength—and it still has high efficiency at other wavelengths that are interesting for fiber optic communications, as well as the quantum optics community. Ironically, the detector is so efficient that it outstrips current technology's ability to determine its precise efficiency.

"We can't be sure from direct measurement that we've achieved 99 percent efficiency because the metrology is not in place to determine how close we are—there's no well-established technique," Nam says. "What is great about our latest progress is that we measure nearly the same detection efficiency for every device we build, package and test. It's the reproducibility that gives us confidence."

The team is currently working to develop evaluation techniques that can measure up to the detector's abilities, and Nam says the team's creation could also help evaluate other light-gathering devices.

"NIST offers a standardized service for measuring the efficiency of photodetectors and optical power meters," he says. "We're trying to develop a calibration technique that extends to ultra-low levels of light. It should be valuable for anyone looking at single photons."

* A.E. Lita, B. Calkins, L.A. Pellouchoud, A.J. Miller and S. Nam. Superconducting transition-edge sensors optimized for high-efficiency photon-number resolving detectors. Presented at the SPIE Symposium on SPIE Defense, Security, and Sensing, Orlando World Center Marriott Resort and Convention Center, Crystal J1 Ballroom, 3 p.m. April 7, 2010.

####

About NIST
From automated teller machines and atomic clocks to mammograms and semiconductors, innumerable products and services rely in some way on technology, measurement, and standards provided by the National Institute of Standards and Technology.

Founded in 1901, NIST is a non-regulatory federal agency within the U.S. Department of Commerce. NIST's mission is to promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.

For more information, please click here

Contacts:
Media Contact
Chad Boutin

(301) 975-4261

Copyright © NIST

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Harris & Harris Group Notes Announcements by Its Portfolio Companies During the Third Quarter of 2016 September 30th, 2016

INVECAS to Enable ASIC Designs for Tomorrow’s Intelligent Systems on GLOBALFOUNDRIES' FDX™ Technology: INVECAS to Collaborate with GLOBALFOUNDRIES to Provide IP and End-to-End ASIC Design Services on 22FDX® and 12FDX™ Technologies September 30th, 2016

How to power up graphene implants without frying cells: New analysis finds way to safely conduct heat from graphene to biological tissues September 30th, 2016

Innovation in Nanotechnology is Focus of Symposium: Annual event brings international experts to Northwestern Oct. 6 September 29th, 2016

Possible Futures

Harris & Harris Group Notes Announcements by Its Portfolio Companies During the Third Quarter of 2016 September 30th, 2016

How to power up graphene implants without frying cells: New analysis finds way to safely conduct heat from graphene to biological tissues September 30th, 2016

Nanosensors could help determine tumors’ ability to remodel tissue: Measuring enzyme levels could help doctors select appropriate treatments September 29th, 2016

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

Quantum Computing

Harris & Harris Group Notes Announcements by Its Portfolio Companies During the Third Quarter of 2016 September 30th, 2016

NREL discovery creates future opportunity in quantum computing: Research into perovskites looks beyond material's usage for efficient solar cells September 9th, 2016

NREL Discovery Creates Future Opportunity in Quantum Computing: Research into perovskites looks beyond material’s usage for efficient solar cells September 1st, 2016

Colors from darkness: Researchers develop alternative approach to quantum computing August 31st, 2016

Announcements

Harris & Harris Group Notes Announcements by Its Portfolio Companies During the Third Quarter of 2016 September 30th, 2016

INVECAS to Enable ASIC Designs for Tomorrow’s Intelligent Systems on GLOBALFOUNDRIES' FDX™ Technology: INVECAS to Collaborate with GLOBALFOUNDRIES to Provide IP and End-to-End ASIC Design Services on 22FDX® and 12FDX™ Technologies September 30th, 2016

How to power up graphene implants without frying cells: New analysis finds way to safely conduct heat from graphene to biological tissues September 30th, 2016

Innovation in Nanotechnology is Focus of Symposium: Annual event brings international experts to Northwestern Oct. 6 September 29th, 2016

Photonics/Optics/Lasers

Mexican scientist in the Netherlands seeks to achieve data transmission ... speed of light September 20th, 2016

Towards Stable Propagation of Light in Nano-Photonic Fibers September 20th, 2016

PHENOMEN is a FET-Open Research Project aiming to lay the foundations a new information technology September 19th, 2016

NIST Patents Single-Photon Detector for Potential Encryption and Sensing Apps September 16th, 2016

Quantum nanoscience

Chains of nanogold – forged with atomic precision September 23rd, 2016

Notre Dame researchers find transition point in semiconductor nanomaterials September 6th, 2016

NREL Discovery Creates Future Opportunity in Quantum Computing: Research into perovskites looks beyond material’s usage for efficient solar cells September 1st, 2016

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic