Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Mimicking the body's natural processes

Abstract:
An EU-funded research team at Norway's University of Bergen is using nanotechnology to find a way of mimicking the body's natural processes, including inducing cells to create new blood vessels for biomedically engineered tissues. The University of Bergen is involved in several major EU-funded projects, such as VascuBone ('Construction kit for tailor-made vascularized bone implants'), which has 15 partners and EUR 12 million of research funding under the Cooperation Programme of the Seventh Framework Programme (FP7). The project's remit is to improve the formation of blood vessels during the regeneration of new bone tissue.

Mimicking the body's natural processes

EU | Posted on April 14th, 2010

Biomedical and nanotechnology researchers around the world are working hard to induce cells to create new tissues. But all tissues need a blood supply and that is what the University of Bergen research team is focusing on.

The team is looking at how nanotechnology can mimic the natural processes of the body. To do so, they are investigating how cells interact with each other and with synthetic biomaterials, and what the process of regeneration involves. The aim is to understand and then copy the cells' natural mechanisms for the regeneration and engineering of new tissues.

'An ideal implant,' explained research team head Professor James Lorens from the University of Bergen, 'should mimic the body's natural tissues and send proliferation and differentiation signals to the cells. The nanoscale topology is vital for controlling how this occurs.

'A primary challenge with any tissue formation, however, is securing the blood supply to the new tissue. In other words, making sure that blood vessels are formed within the tissue.'

Professor Lorens' team is working on the blood supply aspect of tissue engineering and has already succeeded in placing three blood vessel components (epithelial and smooth muscle cells as well as matrix proteins) into an implant where cells are connected to new tissue. The experiment was successful in both Petri dishes and small implants in animals.

'We have demonstrated vessel formation in synthetic implants in our lab animals,' said Professor Lorens. 'In the next phase, we'll examine more specific tissue types such as bone tissue, for example.'

The team is also looking at ways of using nanotechnology for direct cell communication. To determine how nanostructured surfaces affect blood vessel formation, the researchers placed cells on a nanostructured biomaterial, the surface of which had been treated with certain molecules that send specific signals to cells.

'We need a better understanding of how cells perceive nanofabricated surfaces and how this affects communication between cells,' said Professor Lorens. 'By reproducing the signals that cells encounter from their immediate surroundings inside the body's various tissues, we can control how the cells proliferate and differentiate.'

Part of the research group's work is to establish how these processes work in cancerous tissues. Professor Lorens commented, 'With tissue engineering we can reproduce a tumour in order to study how it interacts with blood vessels. If we succeed in cutting the blood supply to the tumour, it will starve and die. Tumour tissue engineering can also help us to understand how cancer cells spread via blood circulation.'

The University of Bergen team is also involved in an EU collaboration to find new medications that can block the blood supply to cancerous tissues, in effect starving the cancer by depriving it of blood.

For more information, please visit:

VascuBone project: www.vascubone.fraunhofer.eu/index.html

University of Bergen: www.uib.no/en/

Research Council of Norway: www.forskningsradet.no/

####

For more information, please click here

Copyright © CORDIS

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Researchers printed graphene-like materials with inkjet August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Engineers pioneer platinum shell formation process and achieve first-ever observation August 11th, 2017

Possible Futures

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Academic/Education

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Graduate Students from Across the Country Attend Hands-on NanoCamp: Prominent scientists Warren Oliver, Ph.D., and George Pharr, Ph.D., presented a weeklong NanoCamp for hand-picked graduate students across the United States July 26th, 2017

The Physics Department of Imperial College, London, uses the Quorum Q150T to deposit metals and ITO to make plasmonic sensors and electric contact pads July 13th, 2017

Nanomedicine

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Announcements

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Nanobiotechnology

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project