Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Scientists develop green method to produce propylene oxide

Argonne scientists (from left) Stefan Vajda, Larry Curtiss and Jeff Greeley have developed a new way of creating propylene that eliminates the many environmentally unfriendly by-products.
Argonne scientists (from left) Stefan Vajda, Larry Curtiss and Jeff Greeley have developed a new way of creating propylene that eliminates the many environmentally unfriendly by-products.

Abstract:
Scientists at the U.S. Department of Energy's Argonne National Laboratory have identified a new class of silver-based catalysts for the production of the industrially useful chemical propylene oxide that is both environmentally friendly and less expensive.

Scientists develop green method to produce propylene oxide

Argonne, IL | Posted on April 12th, 2010

"The production of propylene oxide has a significant amount of by-products that are harmful to the environment, including chlorinated or peroxycarboxylic waste," said chemist Stefan Vajda of Argonne's Materials Science Division and Center for Nanoscale Materials. "We have identified nanoclusters of silver as a catalyst that produce this chemical with few by-products at low temperatures."

Propylene oxide is commonly used in the creation of plastics and propylene glycols for paints, household detergents and automotive brake fluids.

The study is a result of a highly collaborative team that involved five Argonne divisions and collaborators from the Fritz-Haber-Institut in Berlin and from the University of Illinois at Chicago, including a collaboration between the experimental effort led by Stefan Vajda and the theoretical analysis led by materials chemist Larry Curtiss and nanoscientist Jeff Greeley.

Large silver particles have been used to produce propylene oxide from propylene, but this method suffers from a low selectivity or low conversion to propylene oxide—creating a large amount of carbon dioxide. Vajda discovered that nanoscale clusters of silver, consisting of both three-atom clusters as well as larger clusters of 3.5 nanometers in size, are highly active and selective catalysts for the production of propylene oxide.

Curtiss and Greeley then modeled the underlying mechanism behind why these ultrasmall nanoparticles of silver were so effective in creating propylene oxide. They discovered that the open shell electronic structure of the silver catalysts was the impetus behind the nanoclusters' selectivity.

"Propylene oxide is a building block in the creation of several other industrially relevant chemicals, but the current methods of creating it are not efficient," Curtiss said. "The work opens a new chapter in the field of silver as a catalyst for propene epoxidation."

"This is basically a holy grail reaction," said Greeley.

Funding for this project was provided by the U.S. Department of Energy Office of Science and from the U.S. Air Force Office of Scientific Research. A paper on this work will be published in the April 9 issue of the journal Science.

####

About Argonne National Laboratory
Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America 's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

The Center for Nanoscale Materials at Argonne National Laboratory is one of five DOE Nanoscale Science Research Centers (NSRCs), premier national user facilities for inter-disciplinary research at the nanoscale, supported by the DOE Office of Science. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE’s Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge and Sandia and Los Alamos National Laboratories. For more information about the DOE NSRCs, please visit nano.energy.gov.

For more information, please click here

Contacts:
Brock Cooper
630/252-5565

Copyright © Argonne National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Ultracold atom waves may shed light on rogue ocean killers: Rice quantum experiments probe underlying physics of rogue ocean waves April 27th, 2017

Looking for the quantum frontier: Beyond classical computing without fault-tolerance? April 27th, 2017

Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook April 27th, 2017

Arrowhead Pharmaceuticals to Webcast Fiscal 2017 Second Quarter Results April 27th, 2017

Affordable STM32 Cloud-Connectable Kit from STMicroelectronics Puts More Features On-Board for Fast and Flexible IoT-Device Development April 26th, 2017

Chemistry

Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook April 27th, 2017

Shedding light on the absorption of light by titanium dioxide April 14th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Ultracold atom waves may shed light on rogue ocean killers: Rice quantum experiments probe underlying physics of rogue ocean waves April 27th, 2017

Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook April 27th, 2017

Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive April 24th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

Possible Futures

Looking for the quantum frontier: Beyond classical computing without fault-tolerance? April 27th, 2017

Video captures bubble-blowing battery in action: Researchers propose how bubbles form, could lead to smaller lithium-air batteries April 26th, 2017

California Research Alliance by BASF establishes more than 25 research projects in three years April 26th, 2017

Geoffrey Beach: Drawn to explore magnetism: Materials researcher is working on the magnetic memory of the future April 25th, 2017

Academic/Education

California Research Alliance by BASF establishes more than 25 research projects in three years April 26th, 2017

SUNY Polytechnic Institute Announces Total of 172 Teams Selected to Compete in Solar in Your Community Challenge: Teams from 40 states, plus Washington, DC, 2 Territories, and 4 American Indian Reservations, Will Deploy Solar in Underserved Communities April 20th, 2017

Rice crew revved for Nanocar Race: Nanocar creator James Tour and team take on international competition with single-molecule marvel April 20th, 2017

The Catholic University of Rome uses the JPK NanoWizard® AFM & CellHesion® systems to understand how cells sense and respond to mechanical stimuli April 5th, 2017

Announcements

Ultracold atom waves may shed light on rogue ocean killers: Rice quantum experiments probe underlying physics of rogue ocean waves April 27th, 2017

Looking for the quantum frontier: Beyond classical computing without fault-tolerance? April 27th, 2017

Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook April 27th, 2017

Arrowhead Pharmaceuticals to Webcast Fiscal 2017 Second Quarter Results April 27th, 2017

Environment

NanoMONITOR shares its latest developments concerning the NanoMONITOR Software and the Monitoring stations April 21st, 2017

Wood filter removes toxic dye from water April 21st, 2017

Making Batteries From Waste Glass Bottles: UCR researchers are turning glass bottles into high performance lithium-ion batteries for electric vehicles and personal electronics April 19th, 2017

Shedding light on the absorption of light by titanium dioxide April 14th, 2017

Alliances/Trade associations/Partnerships/Distributorships

California Research Alliance by BASF establishes more than 25 research projects in three years April 26th, 2017

BASF and Landa partner to create revolutionary pigments for automotive coatings: The alliance combines BASF innovations with Landa nano-pigment technology April 5th, 2017

Leti Announces EU/South Korean Project for World’s First 5G-system Prototype: Coinciding with the 2018 Winter Games in PyeongChang, Korea, Prototype Will Be First Time State-of-the-art Terrestrial Wireless Communication Is Seamlessly Combined with Disruptive Satellite Communicati April 4th, 2017

ATTOPSEMI Technology Joins FDXcelerator Program to Deliver Advanced Non-Volatile Memory IP to GLOBALFOUNDRIES 22 FDX® Technology Platform: Leading-edge I-fuse™ brings higher reliability, smaller cell size and ease of programmability for consumer, automotive, and IoT applications March 27th, 2017

Research partnerships

California Research Alliance by BASF establishes more than 25 research projects in three years April 26th, 2017

Better living through pressure: Functional nanomaterials made easy April 19th, 2017

Shedding light on the absorption of light by titanium dioxide April 14th, 2017

AIM Photonics Presents Cutting-Edge Integrated Photonics Technology Developments to Packed House at OFC 2017, the Optical Networking and Communication Conference & Exhibition April 11th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project