Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Understanding tiny reactions

Launched laser-cooled atoms are captured by a single, suspended, single-wall carbon nanotube charged to hundreds of volts. A captured atom spirals toward the nanotube (white path) and reaches the environs of the tube surface, where its valence electron (yellow) tunnels into the tube. The resulting ion (purple) is ejected and detected, and the dynamics at the nanoscale are sensitively probed. Credit: Anne Goodsell and Tommi Hakala/Harvard University
Launched laser-cooled atoms are captured by a single, suspended, single-wall carbon nanotube charged to hundreds of volts. A captured atom spirals toward the nanotube (white path) and reaches the environs of the tube surface, where its valence electron (yellow) tunnels into the tube. The resulting ion (purple) is ejected and detected, and the dynamics at the nanoscale are sensitively probed. Credit: Anne Goodsell and Tommi Hakala/Harvard University

Abstract:
Cold atoms and nanotubes come together in atomic 'black hole'

By Steve Bradt, Harvard Staff Writer

Understanding tiny reactions

Cambridge, MA | Posted on April 8th, 2010

Carbon nanotubes, long touted for applications in electronics and in materials, may also be the stuff of atomic-scale black holes.

Physicists at Harvard University have found that a high-voltage nanotube (a tiny tubelike structure) can cause cold atoms to spiral inward under dramatic acceleration before disintegrating violently. The physicists' experiments, which are the first to demonstrate something akin to a black hole at atomic scale, are described in the current issue of the journal Physical Review Letters.

"On a scale of nanometers, we create an inexorable and destructive pull similar to what black holes exert on matter at cosmic scales," said Lene Vestergaard Hau, Mallinckrodt Professor of Physics and of Applied Physics at Harvard. "As importantly for scientists, this is the first merging of cold atom and nanoscale science, and it opens the door to a new generation of cold atom experiments and nanoscale devices."

Hau and co-authors Anne Goodsell, Trygve Ristroph, and Jene A. Golovchenko laser-cooled clouds of 1 million rubidium atoms to just a fraction of a degree above absolute zero. The physicists then launched this millimeter-long atomic cloud toward a suspended carbon nanotube, located some two centimeters away and charged to hundreds of volts.

The vast majority of the atoms passed right by the wire, but those that came within a micron of it — roughly 10 atoms in every million-atom cloud — were inescapably attracted, reaching high speeds as they spiraled toward the nanotube.

"From a start at about 5 meters per second, the cold atoms reach speeds of roughly 1,200 meters per second, or more than 2,700 miles per hour, as they circle the nanotube," said Goodsell, a graduate student on the project and now a postdoctoral researcher in physics at Harvard. "As part of this tremendous acceleration, the temperature corresponding to the atoms' kinetic energy increases from 0.1 degrees Kelvin to thousands of degrees Kelvin in less than a microsecond."

At this point, the speeding atoms separate into an electron and an ion rotating in parallel around the nanowire, completing each orbit in just a few trillionths of a second. The electron eventually gets sucked into the nanotube via quantum tunneling, causing its companion ion to shoot away — repelled by the strong charge of the 300-volt nanotube — at a speed of roughly 26 kilometers per second, or 59,000 miles per hour.

The experiment was conducted with great precision, allowing the scientists unprecedented access to both cold atom and nanoscale processes.

"Cold atom and nanoscale science have each provided exciting new systems for study and applications," said Golovchenko, Rumford Professor of Physics and Gordon McKay Professor of Applied Physics at Harvard. "This is the first experimental realization of a combined cold atom-nanostructure system. Our system demonstrates sensitive probing of atom, electron, and ion dynamics at the nanoscale."

The single-walled carbon nanotube used in these researchers' successful experiment was dubbed "Lucy," and its contributions are acknowledged in the Physical Review Letters paper. The nanotube was grown by chemical vapor deposition across a 10-micron gap in a silicon chip that provides the nanowire with both mechanical support and electrical contact.

"From the atom's point of view, the nanotube is infinitely long and thin, creating a singular effect on the atom," Hau said.

The work was supported by the Air Force Office of Scientific Research and the National Science Foundation.

####

For more information, please click here

Copyright © Harvard University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Maximum Precision in 3D Printing: New complete solution makes additive manufacturing standard for microfabrication February 26th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Warming up the world of superconductors: Clusters of aluminum metal atoms become superconductive at surprisingly high temperatures February 25th, 2015

SUNY Poly CNSE Researchers and Corporate Partners to Present Forty Papers at Globally Recognized Lithography Conference: SUNY Poly CNSE Research Group Awarded Both ‘Best Research Paper’ and ‘Best Research Poster’ at SPIE Advanced Lithography 2015 forum February 25th, 2015

European roadmap for graphene science and technology published February 25th, 2015

Dendrite eraser: New electrolyte rids batteries of short-circuiting fibers: Solution enables a battery with both high efficiency & current density February 24th, 2015

Academic/Education

NanoTecNexus Launches New App for Learning About Nanotechnology—STEM Education Project Spearheaded by Interns February 26th, 2015

SUNY Poly CNSE Researchers and Corporate Partners to Present Forty Papers at Globally Recognized Lithography Conference: SUNY Poly CNSE Research Group Awarded Both ‘Best Research Paper’ and ‘Best Research Poster’ at SPIE Advanced Lithography 2015 forum February 25th, 2015

KIT Increases Commitment in Asia: DAAD Funds Two New Projects: Strategic Partnerships with Chinese Universities and Communi-cation Technologies Network February 22nd, 2015

Minus K Technology Announces Its 2015 Vibration Isolator Educational Giveaway to U.S. Colleges and Universities February 18th, 2015

Nanotubes/Buckyballs

Chromium-Centered Cycloparaphenylene Rings as New Tools for Making Functionalized Nanocarbons February 24th, 2015

Building tailor-made DNA nanotubes step by step: New, block-by-block assembly method could pave way for applications in opto-electronics, drug delivery February 23rd, 2015

Half spheres for molecular circuits: Corannulene shows promising electronic properties February 17th, 2015

SouthWest Nanotechnologies CEO Dave Arthur Appointed to the Board of Affiliates of Rice University Professional Science Master’s Program February 13th, 2015

Discoveries

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Announcements

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE