Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Understanding tiny reactions

Launched laser-cooled atoms are captured by a single, suspended, single-wall carbon nanotube charged to hundreds of volts. A captured atom spirals toward the nanotube (white path) and reaches the environs of the tube surface, where its valence electron (yellow) tunnels into the tube. The resulting ion (purple) is ejected and detected, and the dynamics at the nanoscale are sensitively probed. Credit: Anne Goodsell and Tommi Hakala/Harvard University
Launched laser-cooled atoms are captured by a single, suspended, single-wall carbon nanotube charged to hundreds of volts. A captured atom spirals toward the nanotube (white path) and reaches the environs of the tube surface, where its valence electron (yellow) tunnels into the tube. The resulting ion (purple) is ejected and detected, and the dynamics at the nanoscale are sensitively probed. Credit: Anne Goodsell and Tommi Hakala/Harvard University

Abstract:
Cold atoms and nanotubes come together in atomic 'black hole'

By Steve Bradt, Harvard Staff Writer

Understanding tiny reactions

Cambridge, MA | Posted on April 8th, 2010

Carbon nanotubes, long touted for applications in electronics and in materials, may also be the stuff of atomic-scale black holes.

Physicists at Harvard University have found that a high-voltage nanotube (a tiny tubelike structure) can cause cold atoms to spiral inward under dramatic acceleration before disintegrating violently. The physicists' experiments, which are the first to demonstrate something akin to a black hole at atomic scale, are described in the current issue of the journal Physical Review Letters.

"On a scale of nanometers, we create an inexorable and destructive pull similar to what black holes exert on matter at cosmic scales," said Lene Vestergaard Hau, Mallinckrodt Professor of Physics and of Applied Physics at Harvard. "As importantly for scientists, this is the first merging of cold atom and nanoscale science, and it opens the door to a new generation of cold atom experiments and nanoscale devices."

Hau and co-authors Anne Goodsell, Trygve Ristroph, and Jene A. Golovchenko laser-cooled clouds of 1 million rubidium atoms to just a fraction of a degree above absolute zero. The physicists then launched this millimeter-long atomic cloud toward a suspended carbon nanotube, located some two centimeters away and charged to hundreds of volts.

The vast majority of the atoms passed right by the wire, but those that came within a micron of it — roughly 10 atoms in every million-atom cloud — were inescapably attracted, reaching high speeds as they spiraled toward the nanotube.

"From a start at about 5 meters per second, the cold atoms reach speeds of roughly 1,200 meters per second, or more than 2,700 miles per hour, as they circle the nanotube," said Goodsell, a graduate student on the project and now a postdoctoral researcher in physics at Harvard. "As part of this tremendous acceleration, the temperature corresponding to the atoms' kinetic energy increases from 0.1 degrees Kelvin to thousands of degrees Kelvin in less than a microsecond."

At this point, the speeding atoms separate into an electron and an ion rotating in parallel around the nanowire, completing each orbit in just a few trillionths of a second. The electron eventually gets sucked into the nanotube via quantum tunneling, causing its companion ion to shoot away — repelled by the strong charge of the 300-volt nanotube — at a speed of roughly 26 kilometers per second, or 59,000 miles per hour.

The experiment was conducted with great precision, allowing the scientists unprecedented access to both cold atom and nanoscale processes.

"Cold atom and nanoscale science have each provided exciting new systems for study and applications," said Golovchenko, Rumford Professor of Physics and Gordon McKay Professor of Applied Physics at Harvard. "This is the first experimental realization of a combined cold atom-nanostructure system. Our system demonstrates sensitive probing of atom, electron, and ion dynamics at the nanoscale."

The single-walled carbon nanotube used in these researchers' successful experiment was dubbed "Lucy," and its contributions are acknowledged in the Physical Review Letters paper. The nanotube was grown by chemical vapor deposition across a 10-micron gap in a silicon chip that provides the nanowire with both mechanical support and electrical contact.

"From the atom's point of view, the nanotube is infinitely long and thin, creating a singular effect on the atom," Hau said.

The work was supported by the Air Force Office of Scientific Research and the National Science Foundation.

####

For more information, please click here

Copyright © Harvard University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A first glimpse inside a macroscopic quantum state March 28th, 2015

DFG to Establish One Clinical Research Unit and Five Research Units: New Projects to Investigate Complications in Pregnancy, Particle Physics, Nanoparticles, Implants and Transport Planning / Approximately 13 Million Euros in Funding for an Initial Three-Year Period March 28th, 2015

Chemists make new silicon-based nanomaterials March 27th, 2015

UT Dallas engineers twist nanofibers to create structures tougher than bulletproof vests March 27th, 2015

Govt.-Legislation/Regulation/Funding/Policy

UT Dallas engineers twist nanofibers to create structures tougher than bulletproof vests March 27th, 2015

Novel nanoparticle therapy promotes wound healing March 27th, 2015

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Using magnetic fields to understand high-temperature superconductivity: Los Alamos explores experimental path to potential 'next theory of superconductivity' March 27th, 2015

Academic/Education

LAMDAMAP 2015 hosted by the University March 26th, 2015

SUNY Poly & M+W Make Major Announcement: Major Expansion To Include M+W Owned Gehrlicher Solar America Corporation That Will Create up to 400 Jobs to Develop Solar Power Plants at SUNY Poly Sites Across New York State March 26th, 2015

SUNY POLY CNSE to Host First Ever Northeast Semi Supply Conference (NESCO) Conference Will Connect New and Emerging Innovators in the Northeastern US and Canada with Industry Leaders and Strategic Investors to Discuss Future Growth Opportunities in NYS March 25th, 2015

FEI Joins University of Ulm and CEOS on SALVE Project Research Collaboration: The Sub-Ångström Low Voltage Electron (SALVE) microscope should improve contrast and reduce damage on bio-molecules and two-dimensional nanomaterials, such as graphene March 18th, 2015

Nanotubes/Buckyballs

Carbon nanotube fibers make superior links to brain: Rice University invention provides two-way communication with neurons March 25th, 2015

Iranian Scientists Eliminate Expensive Materials from Diabetes Diagnosis Sensors March 25th, 2015

Effect of Carbon Nanotubes on Properties of Cement Composites Studied in Iran March 23rd, 2015

First proof of isolated attosecond pulse generation at the carbon K-edge March 20th, 2015

Discoveries

A first glimpse inside a macroscopic quantum state March 28th, 2015

UT Dallas engineers twist nanofibers to create structures tougher than bulletproof vests March 27th, 2015

Novel nanoparticle therapy promotes wound healing March 27th, 2015

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Announcements

A first glimpse inside a macroscopic quantum state March 28th, 2015

DFG to Establish One Clinical Research Unit and Five Research Units: New Projects to Investigate Complications in Pregnancy, Particle Physics, Nanoparticles, Implants and Transport Planning / Approximately 13 Million Euros in Funding for an Initial Three-Year Period March 28th, 2015

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Using magnetic fields to understand high-temperature superconductivity: Los Alamos explores experimental path to potential 'next theory of superconductivity' March 27th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE