Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Researchers Discover Weak Link in Alzheimer’s Drug Candidates

Ratnesh Lal, a UCSD bioengineering and mechanical engineering professor, led a multi-disciplinary team of researchers in a breakthrough discovery relating to Alzheimer's disease.
Ratnesh Lal, a UCSD bioengineering and mechanical engineering professor, led a multi-disciplinary team of researchers in a breakthrough discovery relating to Alzheimer's disease.

Abstract:
Some current therapies being investigated for Alzheimer's disease may cause further neural degeneration and cell death, according to a breakthrough discovery by UC San Diego researchers. By combining three dimensional computer simulations with high resolution atomic force microscopy membrane protein and cell imaging, electrical recording and various cellular assays, UCSD nano-biophysicist Ratnesh Lal and his colleagues investigated the structure and function of truncated peptides, known as nonamyloidgenic peptides, formed by some Alzheimer's drug candidates.

By Andrea Siedsma

Researchers Discover Weak Link in Alzheimer’s Drug Candidates

San Diego, CA | Posted on April 2nd, 2010

The researchers found that the nonamyloidgenic peptides formed active ion channels that caused the cells to take in very high levels of calcium ions, which damaged synaptic efficiency and eventually killed neurons, neurons that are linked to memory loss in human brain.

As a result of their current findings and related previous work, Lal and his colleagues believe that aggregate-forming amyloidogenic peptides promote neurological diseases by forming holes or channels in cell membranes, disturbing ionic homeostasis by allowing unwanted ion flow in-and-out of cells, and most importantly allowing toxic amounts of calcium ions into neural cells.

Truncated, shorter non-amyloidogenic peptide fragments that also form ion channels and alter neuronal viability, are assumed by biomedical researchers to be non-toxic and are currently targeted to treat Alzheimer's disease patients. Details of their research were recently published in a paper entitled "Truncated â-amyloid peptide channels provide an alternative mechanism for Alzheimer's Disease and Down syndrome" in the Proceedings of the National Academy of Sciences.

"There are several drugs to treat Alzheimer's in Trials I and II, but we don't believe that they will be adopted for clinical usage," said Lal, a joint professor in the UCSD Jacobs School of Engineering's Department of Mechanical and Aerospace Engineering and Bioengineering. We believe we are providing the most direct mechanism of Alzheimer's disease and Down Syndrome pathology. Through our research we have provided a structure and mechanism (an ion channel) that can account for the pathology. The strategy to control the activity of this structure - the opening and closing of the channel - should be targeted for an effective treatment."

Lal and his colleagues are now working on a 3D structural model of the ion channel using their data to identify the domains (or sites) of the channel for designing effective therapeutics. Lal said the use of advanced nanotechnology and biology combined with a multi disciplinary approach, aided in the researchers' breakthrough discovery.

"Without advances in technology and a multi disciplinary approach this kind of complex research would not move forward," said Lal, a trained physicist and neurobiologist who joined the UCSD faculty in January 2010 from the University of Chicago. ""My goal is to provide practical solutions for effective human health management using advances in nanoscience and technology with a multidisciplinary and multi-scale (nano-to-translational) integrated approach," he added.

####

About University of California, San Diego
UC San Diego is dedicated to the advancement of knowledge through excellence in education and research at the undergraduate, graduate, professional school and postdoctoral levels. The campus is committed to community engagement, public service and industry partnerships in order to advance the health and well-being of our region, state, nation and the world. Our academic community of world-renowned faculty, bright students and dedicated staff is characterized by a culture of interdisciplinary collaboration and innovation which spans the globe.

To foster the best possible working and learning environment, our university strives to maintain a climate of fairness, cooperation, and professionalism, which is embodied in our campus Principles of Community. UC San Diego embraces diversity, equity, and inclusion as essential ingredients of academic excellence in higher education.

For more information, please click here

Contacts:
Media Contact
Andrea Siedsma
858.822.0899

Copyright © University of California, San Diego

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Enhancing the sensing capabilities of diamonds with quantum properties: A simple method can give diamonds the special properties needed for quantum applications such as sensing magnetic fields September 24th, 2017

Quantum twisted Loong confirms the physical reality of wavefunctions September 23rd, 2017

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Possible Futures

Enhancing the sensing capabilities of diamonds with quantum properties: A simple method can give diamonds the special properties needed for quantum applications such as sensing magnetic fields September 24th, 2017

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Academic/Education

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Graduate Students from Across the Country Attend Hands-on NanoCamp: Prominent scientists Warren Oliver, Ph.D., and George Pharr, Ph.D., presented a weeklong NanoCamp for hand-picked graduate students across the United States July 26th, 2017

The Physics Department of Imperial College, London, uses the Quorum Q150T to deposit metals and ITO to make plasmonic sensors and electric contact pads July 13th, 2017

Nanomedicine

Do titanium dioxide particles from orthopedic implants disrupt bone repair? September 16th, 2017

Arrowhead Hosts Investor & Analyst R&D Day to Introduce TRiM(TM) Platform and Lead RNAi-based Drug Candidates September 14th, 2017

Graphene based terahertz absorbers: Printable graphene inks enable ultrafast lasers in the terahertz range September 13th, 2017

Applications for the nanomedTAB are open until September 18th, 2017 September 13th, 2017

Announcements

Enhancing the sensing capabilities of diamonds with quantum properties: A simple method can give diamonds the special properties needed for quantum applications such as sensing magnetic fields September 24th, 2017

Quantum twisted Loong confirms the physical reality of wavefunctions September 23rd, 2017

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Nanobiotechnology

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Do titanium dioxide particles from orthopedic implants disrupt bone repair? September 16th, 2017

Applications for the nanomedTAB are open until September 18th, 2017 September 13th, 2017

Magnetic cellular 'Legos' for the regenerative medicine of the future September 12th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project