Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > How do materials break?

Antonio J. Pons, of the research group on Nonlinear Dynamics, Nonlinear Optics and Lasers of the Universitat Politècnica de Catalunya (UPC)-Barcelona Tech.
Antonio J. Pons, of the research group on Nonlinear Dynamics, Nonlinear Optics and Lasers of the Universitat Politècnica de Catalunya (UPC)-Barcelona Tech.

Abstract:
For the first time ever, a researcher from the UPC-Barcelona Tech Campus in Terrassa has developed a new mathematical model for predicting and describing the fracture process for materials such as glass, polymers, concrete, ceramics, metals, rocks, and even certain geological fractures. The research has been published in Nature magazine.

How do materials break?

Barcelona | Posted on March 30th, 2010

Antonio J. Pons, of the research group on Nonlinear Dynamics, Nonlinear Optics and Lasers of the Universitat Politècnica de Catalunya (UPC)-Barcelona Tech at the Terrassa Campus, has developed a new mathematical model leading to a new law of physics that describes all the stages involved in the way materials crack, making it possible to predict how they will do so before the fracture actually occurs. This is the first time ever that this model has been used to describe objects or materials in 3D, namely all of those that occupy a volume in space and are isotropic, with a homogeneous structure. The study, published in the first week of March in Nature, has been completed in collaboration with researcher Alain Karma, professor at Northeastern University in Boston.

A powerful simulation

From a technological, physical, and geological perspective, everything around us is material, and everything is potentially breakable: the wing of an airplane, the column supporting a building, the hull of a ship, the nozzle of a hose and even the structure of the Earth in a geological fault. Until now, science strove to understand how the simplest things broke: two-dimensional objects such as sheets of paper, for instance; meanwhile, breakage in three-dimensional objects continued to baffle scientists.

It is known that if certain tensions are applied to objects, they crack, but what remains uncertain is what forces describe the crack path and how it occurs. Antonio J. Pons' study puts an end to this uncertainty, creating a simulation model powerful enough to predict and describe crack patterns in structures ranging in size from the microscopic to others as large as certain geological faults. This simulation model actually replicates all the stages in the fracture process from beginning to end, and knowing how certain materials behave can enable us to design new materials that are far more crack-resistant.

How some materials break

A material—or, in other words, any solid object or element in our environment—can break in three different ways: from top to bottom (as in the San Andreas Fault, in California); horizontally, like a cut; or as a tear, for instance when a cable is pulled and twisted at the same time.

To set a few other examples, the fault along the Serranía del Interior mountain range in Venezuela cracks following a mixed pattern, combining the first and the third model; the crankshaft in a car motor breaks from torsion and fatigue; an adjustable wrench also breaks from fatigue; polymer materials crack like rocks; objects made of glass break along the same crack lines as geological fractures.

Disaster prediction

Antonio J. Pons' new method now enables the scientific community to describe the processes involved in the fracture of materials from their initial state, as the break develops, and its final outcome at all scales. In addition, the method allows for describing cracks mathematically in three dimensions. The method also enables us to perform numerical simulations that were impossible until now. With this research, crack front patterns can be predicted before they appear, opening up the possibility of applications for preventing disasters and optimizing materials or new production techniques for microscopic elements. It also enables us to predict and gain a better understanding of the way in which bones break in patients suffering from certain pathologies such as osteoporosis.

Macro and micro technological applications

"Our method offers enormous potential because it enables us to study and understand natural problems that have technological implications", Pons explains. The UPC-Barcelona Tech researcher's study can prove highly useful in the field of materials technology, for instance: if the model is capable of reproducing cracks at the microscopic level, it can also be instrumental in providing an understanding of how to control them, thus opening up the possibility of using the resulting structures as microscopic molds. However, this would occur in a later stage of the research.

Another useful application of this mathematical model involves understanding the behavior of large structures such as buildings in areas with intense seismic activity. The new method makes it possible to modify construction materials to make these buildings safer.

Videos of the new method in the electronic version of the article:

www.nature.com/nature/journal/v464/n7285/suppinfo/nature08862.html

####

About Universitat Politècnica de Catalunya
The UPC-BARCELONA TECH is a university with a consolidated worldwide reputation and an international vision that generates technological innovation and attracts talent. The objectives of the UPC- BARCELONA TECH are based on internationalization, as it is Spain’s technical university with the highest number of international PhD students and Spain’s university with the highest number of international master’s degree students. The UPC- BARCELONA TECH has a vision of innovation and talent in a global and highly competitive world.

For more information, please click here

Contacts:
Media Office
Technical University of Catalonia (UPC)
Tel. 93 401 61 43 - Fax 93 401 56 87

Copyright © Universitat Politècnica de Catalunya

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

NREL Announces New Center Directors to lead R&D, Analysis Efforts September 30th, 2014

Yale University and Leica Microsystems Partner to Establish Microscopy Center of Excellence: Yale Welcomes Scientists to Participate in Core Facility Opening and Super- Resolution Workshops October 20 Through 31, 2014 September 30th, 2014

Speed at its limits September 30th, 2014

Research mimics brain cells to boost memory power September 30th, 2014

Academic/Education

Yale University and Leica Microsystems Partner to Establish Microscopy Center of Excellence: Yale Welcomes Scientists to Participate in Core Facility Opening and Super- Resolution Workshops October 20 Through 31, 2014 September 30th, 2014

Rice launches Center for Quantum Materials: RCQM will immerse global visitors in cross-disciplinary research September 30th, 2014

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

Malvern technology delivers Malvern reliability in multi-disciplinary lab at Queen Mary University London September 9th, 2014

Discoveries

Research mimics brain cells to boost memory power September 30th, 2014

Ad-REIC vaccine: A magic bullet for cancer treatment September 30th, 2014

New Topical Hemostatic Agent: Neutral Self-Assembling Peptide Hydrogel September 30th, 2014

Chemical interactions between silver nanoparticles and thiols: A comparison of mercaptohexanol again September 30th, 2014

Materials/Metamaterials

Rice launches Center for Quantum Materials: RCQM will immerse global visitors in cross-disciplinary research September 30th, 2014

How things coil: Researchers discover that simulation technology designed for Hollywood can be used as a predictive tool for understanding fundamental engineering problems September 29th, 2014

Iranian Scientists Determine Grain Size, Minimize Time of Nanocomposite Synthesis September 29th, 2014

Nanoparticles Used to Improve Quality of Bone Cement September 29th, 2014

Announcements

Park Systems Announces Outsourced Analytical Services Including AFM Surface Imaging, Data Analysis and Interpretation September 30th, 2014

Ad-REIC vaccine: A magic bullet for cancer treatment September 30th, 2014

New Topical Hemostatic Agent: Neutral Self-Assembling Peptide Hydrogel September 30th, 2014

Chemical interactions between silver nanoparticles and thiols: A comparison of mercaptohexanol again September 30th, 2014

Research partnerships

Research mimics brain cells to boost memory power September 30th, 2014

'Pixel' engineered electronics have growth potential: Rice, Oak Ridge, Vanderbilt, Penn scientists lead creation of atom-scale semiconducting composites September 29th, 2014

Teijin Aramid’s carbon nanotube fibers awarded with Paul Schlack prize: New generation super fibers bring wave of innovations to fiber market September 25th, 2014

Smallest-possible diamonds form ultra-thin nanothread September 25th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE