Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > UCSB Physicists Show Theory of Quantum Mechanics Applies to the Motion of Large Objects

Andrew Cleland, Aaron O'Connell, and John Martinis
Andrew Cleland, Aaron O'Connell, and John Martinis

Abstract:
Researchers at UC Santa Barbara have provided the first clear demonstration that the theory of quantum mechanics applies to the mechanical motion of an object large enough to be seen by the naked eye. Their work satisfies a longstanding goal among physicists.

UCSB Physicists Show Theory of Quantum Mechanics Applies to the Motion of Large Objects

Santa Barbara, CA | Posted on March 18th, 2010

In a paper published in the March 17 issue of the advance online journal Nature, Aaron O'Connell, a doctoral student in physics, and John Martinis and Andrew Cleland, professors of physics, describe the first demonstration of a mechanical resonator that has been cooled to the quantum ground state, the lowest level of vibration allowed by quantum mechanics. With the mechanical resonator as close as possible to being perfectly still, they added a single quantum of energy to the resonator using a quantum bit (qubit) to produce the excitation. The resonator responded precisely as predicted by the theory of quantum mechanics.

"This is an important validation of quantum theory, as well as a significant step forward for nanomechanics research," said Cleland.

The researchers reached the ground state by designing and constructing a microwave-frequency mechanical resonator that operates similarly to -- but at a higher frequency than -- the mechanical resonators found in many cellular telephones. They wired the resonator to an electronic device developed for quantum computation, a superconducting qubit, and cooled the integrated device to temperatures near absolute zero. Using the qubit as a quantum thermometer, the researchers demonstrated that the mechanical resonator contained no extra vibrations. In other words, it had been cooled to its quantum ground state.

The researchers demonstrated that, once cooled, the mechanical resonator followed the laws of quantum mechanics. They were able to create a single phonon, the quantum of mechanical vibration, which is the smallest unit of vibrational energy, and watch as this quantum of energy exchanged between the mechanical resonator and the qubit. While exchanging this energy, the qubit and resonator become "quantum entangled," such that measuring the qubit forces the mechanical resonator to "choose" the vibrational state in which it should remain.

In a related experiment, they placed the mechanical resonator in a quantum superposition, a state in which it simultaneously had zero and one quantum of excitation. This is the energetic equivalent of an object being in two places at the same time. The researchers showed that the resonator again behaved as expected by quantum theory.

####

For more information, please click here

Contacts:
Andrea Estrada
805-893-4620

Andrew Cleland
805-893-5401

John Martinis
805-893-3910

Aaron O'Connell

Copyright © University of California, Santa Barbara

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Tissue regeneration using anti-inflammatory nanomolecules August 22nd, 2014

A breakthrough in imaging gold nanoparticles to atomic resolution by electron microscopy August 22nd, 2014

Ultra-short pulse lasers & Positioning August 21st, 2014

Malvern’s Dr Alan Rawle talks TLAs in plenary lecture at Particulate Systems Analysis conference August 21st, 2014

Physics

Rice physicist emerges as leader in quantum materials research: Nevidomskyy wins both NSF CAREER Award and Cottrell Scholar Award August 20th, 2014

Promising Ferroelectric Materials Suffer From Unexpected Electric Polarizations: Brookhaven Lab scientists find surprising locked charge polarizations that impede performance in next-gen materials that could otherwise revolutionize data-driven devices August 18th, 2014

Moore quantum materials: Recipe for serendipity - Moore Foundation grant will allow Rice physicist to explore quantum materials August 12th, 2014

Harry Atwater and Albert Polman receive the Julius Springer Prize for Applied Physics 2014: Scientists honored for their pioneering achievements in plasmonics and nanophotonics August 8th, 2014

Academic/Education

SEMATECH and Newly Merged SUNY CNSE/SUNYIT Launch New Patterning Center to Further Advance Materials Development: Center to Provide Access to Critical Tools that Support Semiconductor Technology Node Development August 7th, 2014

Oxford Instruments Asylum Research and the Center for Nanoscale Systems at Harvard University Present a Workshop on AFM Nanomechanical and Nanoelectrical Characterization, Aug. 21-22 August 6th, 2014

University of Manchester selects Anasys AFM-IR for coatings and corrosion research July 30th, 2014

Haydale Announces Collaboration Agreement with Swansea University’s Welsh Centre for Printing and Coatings (WCPC) July 12th, 2014

Quantum Computing

Molecular engineers record an electron's quantum behavior August 14th, 2014

Diamonds are a Quantum Computer’s Best Friend: A new kind of quantum computer is being proposed by scientists from the TU Wien (Vienna) and Japan (National Institute of Informatics and NTT Basic Research Labs) August 8th, 2014

Diamond defect interior design: Planting imperfections called 'NV centers' at specific spots within a diamond lattice could advance quantum computing and atomic-scale measurement August 5th, 2014

Watching Schrödinger's cat die (or come to life): Steering quantum evolution & using probes to conduct continuous error correction in quantum computers July 30th, 2014

Discoveries

Tissue regeneration using anti-inflammatory nanomolecules August 22nd, 2014

A breakthrough in imaging gold nanoparticles to atomic resolution by electron microscopy August 22nd, 2014

Shaping the Future of Nanocrystals: Berkeley Lab Researchers Obtain First Direct Observation of Facet Formation in Nanocubes August 21st, 2014

Water window imaging opportunity: A new theoretical study elucidates mechanisms that could help in producing coherent radiations, ultimately promoting high-contrast imaging of biological samples August 21st, 2014

Announcements

Tissue regeneration using anti-inflammatory nanomolecules August 22nd, 2014

A breakthrough in imaging gold nanoparticles to atomic resolution by electron microscopy August 22nd, 2014

Malvern’s Dr Alan Rawle talks TLAs in plenary lecture at Particulate Systems Analysis conference August 21st, 2014

Water window imaging opportunity: A new theoretical study elucidates mechanisms that could help in producing coherent radiations, ultimately promoting high-contrast imaging of biological samples August 21st, 2014

Quantum nanoscience

Rice physicist emerges as leader in quantum materials research: Nevidomskyy wins both NSF CAREER Award and Cottrell Scholar Award August 20th, 2014

Molecular engineers record an electron's quantum behavior August 14th, 2014

Moore quantum materials: Recipe for serendipity - Moore Foundation grant will allow Rice physicist to explore quantum materials August 12th, 2014

Measuring the Smallest Magnets July 28th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE