Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Ultra-powerful Laser Makes Silicon Pump Liquid Uphill with No Added Energy

Abstract:
Researchers at the University of Rochester's Institute of Optics have discovered a way to make liquid flow vertically upward along a silicon surface, overcoming the pull of gravity, without pumps or other mechanical devices.

Ultra-powerful Laser Makes Silicon Pump Liquid Uphill with No Added Energy

Rochester, NY | Posted on March 18th, 2010

In a paper in the journal Optics Express, professor Chunlei Guo and his assistant Anatoliy Vorobyev demonstrate that by carving intricate patterns in silicon with extremely short, high-powered laser bursts, they can get liquid to climb to the top of a silicon chip like it was being sucked through a straw.

Unlike a straw, though, there is no outside pressure pushing the liquid up; it rises on its own accord. By creating nanometer-scale structures in silicon, Guo greatly increases the attraction that water molecules feel toward it. The attraction, or hydrophile, of the silicon becomes so great, in fact, that it overcomes the strong bond that water molecules feel for other water molecules.

Thus, instead of sticking to each other, the water molecules climb over one another for a chance to be next to the silicon. (This might seem like getting energy for free, but even though the water rises, thus gaining potential energy, the chemical bonds holding the water to the silicon require a lower energy than the ones holding the water molecules to other water molecules.) The water rushes up the surface at speeds of 3.5 cm per second.

Yet the laser incisions are so precise and nondestructive that the surface feels smooth and unaltered to the touch.

In a paper a few months ago in the journal Applied Physics Letters, the same researchers proved that the phenomenon was possible with metal, but extending it to silicon could have some important implications. For instance, Guo said, this work could pave the way for novel cooling systems for computers that operate much more effectively, elegantly, and efficiently than currently available options.

"Heat is definitely the number one problem deterring the design of faster conventional processors," said Michael Scott, a professor of computer science at the University, who is not involved in this research.

Computer chips are essentially wafers of silicon covered with billions of microscopic transistors that communicate by sending electrical signals through metal wires that connect them. As technological innovations make it possible to pack astounding numbers of transistors on small pieces of silicon, computer processing speeds could increase substantially; however, the electrical current constantly surging through the chips creates a lot of heat, Scott said. If left unchecked, the heat can melt or otherwise destroy the chip components.

Most computers these days are cooled with fans. Essentially, the air around the circuit components absorbs the heat that is generated and the fan blows that hot air away from the components. The disadvantages of this method are that cold air cannot absorb very much heat before becoming hot, making fans ineffective for faster processors, and fans are noisy.

For these reasons, many companies have been eager to investigate the possibility of using liquid as a coolant instead of air. Liquids can absorb far more heat, and transmit heat much more effectively than air. So far, designers have not created liquid cooling systems that are cost-effective and energy efficient enough to become widely used in economical personal computers. Although Guo's discovery has not yet been incorporated into a prototype, he thinks that silicon that can pump its own coolant has the potential to contribute greatly to the design of future cooling systems.

####

About University of Rochester
The University of Rochester is one of the country's top-tier research universities. Our 158 buildings house more than 200 academic majors, more than 2,000 faculty and instructional staff, and some 9,300 students—approximately half of whom are women.

Learning at the University of Rochester is also on a very personal scale. Rochester remains one of the smallest and most collegiate among top research universities, with smaller classes, a low 9:1 student to teacher ratio, and increased interactions with faculty.

For more information, please click here

Contacts:
Alan Blank

585-275-2671

Copyright © University of Rochester

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Transparent, electrically conductive network of encapsulated silver nanowires: A novel electrode for optoelectronics August 1st, 2015

Harris & Harris Group Portfolio Company, HZO, Announces Partnerships with Dell and Motorola August 1st, 2015

Advances and Applications in Biosensing, Sensor Power, and Sensor R&D to be Covered at Sensors Global Summit August 1st, 2015

Kalam: versatility personified August 1st, 2015

Possible Futures

Nanofiltration Membrane Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Nanozirconia Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Self-Healing Nano Anti-rust Coatings Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Nano Spray Instrument Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Academic/Education

Pakistani Students Who Survived Terror Attack to Attend Weeklong “NanoDiscovery Institute” at SUNY Poly CNSE in Albany July 29th, 2015

Deben reports on the use of their CT500 in the X-ray microtomography laboratory at La Trobe University, Melbourne, Australia July 22nd, 2015

JPK reports on the use of SPM in the Messersmith Group at UC Berkeley looking at biologically inspired polymer adhesives. July 21st, 2015

Renishaw adds Raman analysis to Scanning Electron Microscopy at the University of Sydney, Australia July 9th, 2015

Chip Technology

This could replace your silicon computer chips: A new semiconductor material made from black phosphorus may be a candidate to replace silicon in future tech July 30th, 2015

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

Announcements

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

Transparent, electrically conductive network of encapsulated silver nanowires: A novel electrode for optoelectronics August 1st, 2015

Harris & Harris Group Portfolio Company, HZO, Announces Partnerships with Dell and Motorola August 1st, 2015

Advances and Applications in Biosensing, Sensor Power, and Sensor R&D to be Covered at Sensors Global Summit August 1st, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project