Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Light twists rigid structures in unexpected nanotech finding

After 72 hours of exposure to ambient light, strands of nanoparticles twisted and bunched together. Credit: Nicholas Kotov
After 72 hours of exposure to ambient light, strands of nanoparticles twisted and bunched together. Credit: Nicholas Kotov

Abstract:
In findings that took the experimenters three years to believe, University of Michigan engineers and their collaborators have demonstrated that light itself can twist ribbons of nanoparticles.

The results are published in the current edition of Science.

Light twists rigid structures in unexpected nanotech finding

Ann Arbor, MI | Posted on March 17th, 2010

Matter readily bends and twists light. That's the mechanism behind optical lenses and polarizing 3-D movie glasses. But the opposite interaction has rarely been observed, said Nicholas Kotov, principal investigator on the project. Kotov is a professor in the departments of Chemical Engineering, Biomedical Engineering and Materials Science and Engineering.

While light has been known to affect matter on the molecular scale—bending or twisting molecules a few nanometers in size—it has not been observed causing such drastic mechanical twisting to larger particles. The nanoparticle ribbons in this study were between one and four micrometers long. A micrometer is one-millionth of a meter.

"I didn't believe it at the beginning," Kotov said. "To be honest, it took us three and a half years to really figure out how photons of light can lead to such a remarkable change in rigid structures a thousand times bigger than molecules."

Kotov and his colleagues had set out in this study to create "superchiral" particles—spirals of nano-scale mixed metals that could theoretically focus visible light to specks smaller than its wavelength. Materials with this unique "negative refractive index" could be capable of producing Klingon-like invisibility cloaks, said Sharon Glotzer, a professor in the departments of Chemical Engineering and Materials Science and Engineering who was also involved in the experiments. The twisted nanoparticle ribbons are likely to lead to the superchiral materials, the professors say.

To begin the experiment, the researchers dispersed nanoparticles of cadmium telluride in a water-based solution. They checked on them intermittently with powerful microscopes. After about 24 hours under light, the nanoparticles had assembled themselves into flat ribbons. After 72 hours, they had twisted and bunched together in the process.

But when the nanoparticles were left in the dark, distinct, long, straight ribbons formed.

"We discovered that if we make flat ribbons in the dark and then illuminate them, we see a gradual twisting, twisting that increases as we shine more light," Kotov said. "This is very unusual in many ways."

The light twists the ribbons by causing a stronger repulsion between nanoparticles in them.

"The twisted ribbon is a new shape in nanotechnology," Kotov said. "Besides superchiral materials, he envisions clever applications for the shape and the technique used to create I it. Sudhanshu Srivastava, a postdoctoral researcher in his lab, is trying to make the spirals rotate."

"He's making very small propellers to move through fluid—nanoscale submarines, if you will," Kotov said. "You often see this motif of twisted structures in mobility organs of bacteria and cells."

The nanoscale submarines could conceivably be used for drug-delivery and in microfluidic systems that mimic the body for experiments.

This newly-discovered twisting effect could also lead to microelectromechanical systems that are controlled by light. And it could be utilized in lithography, or microchip production.

Glotzer and Aaron Santos, a postdoctoral researcher in her lab, performed computer simulations that helped Kotov and his team better understand how the ribbons form. The simulations showed that under certain circumstances, the complex combination of forces between the tetrahedrally-shaped nanoparticles could conspire to produce ribbons of just the width observed in the experiments. A tetrahedron is a pyramid-shaped, three-dimensional polyhedron.

"The precise balance of forces leading to the self-assembly of ribbons is very revealing," Glotzer said. "It could be used to stabilize other nanostructures made of non-spherical particles. It's all about how the particles want to pack themselves."

Other collaborators include researchers from the University of Leeds in the UK, Chungju National University in Korea, Argonne National Laboratory, Pusan National University in Korea and Jiangnan University in China.

The paper is titled Light-Controlled Self-Assembly of Semiconductor Nanoparticles into Twisted Ribbons. The research is funded by the Air Force Office of Scientific Research, the Korea Science and Engineering Foundation and the U.S. Department of Energy.

####

About University of Michigan College of Engineering
Michigan Engineering: The University of Michigan College of Engineering is ranked among the top engineering schools in the country. At $160 million annually, its engineering research budget is one of largest of any public university. Michigan Engineering is home to 11 academic departments and a National Science Foundation Engineering Research Center. The college plays a leading role in the Michigan Memorial Phoenix Energy Institute and hosts the world class Lurie Nanofabrication Facility. Michigan Engineering's premier scholarship, international scale and multidisciplinary scope combine to create The Michigan Difference.

For more information, please click here

Contacts:
Nicole Casal Moore
Phone: (734) 647-7087

Copyright © University of Michigan College of Engineering

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Radiation-guided nanoparticles zero in on metastatic cancer July 1st, 2016

Synthesized microporous 3-D graphene-like carbons: IBS research team create carbon synthesis using zeolites as a template July 1st, 2016

No need in supercomputers: Russian scientists suggest a PC to solve complex problems tens of times faster than with massive supercomputers June 30th, 2016

Surprising qualities of insulator ring surfaces: Surface phenomena in ring-shaped topological insulators are just as controllable as those in spheres made of the same material June 30th, 2016

Display technology/LEDs/SS Lighting/OLEDs

GraphExeter illuminates bright new future for flexible lighting devices June 23rd, 2016

New nanomaterial offers promise in bendable, wearable electronic devices: Electroplated polymer makes transparent, highly conductive, ultrathin film June 13th, 2016

Graphene-based transparent electrodes for highly efficient flexible OLEDS: A Korean research team developed an ideal electrode structure composed of graphene and layers of titanium dioxide and conducting polymers, resulting in highly flexible and efficient OLEDs June 5th, 2016

Microfluidics/Nanofluidics

Droplets finally all the same size -- in a nanodroplet library June 20th, 2016

NanoLabNL boosts quality of research facilities as Dutch Toekomstfonds invests firmly June 10th, 2016

Govt.-Legislation/Regulation/Funding/Policy

A drop of water as a model for the interplay of adhesion and stiction June 30th, 2016

How cancer cells spread and squeeze through tiny blood vessels (video) June 30th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Possible Futures

Radiation-guided nanoparticles zero in on metastatic cancer July 1st, 2016

A drop of water as a model for the interplay of adhesion and stiction June 30th, 2016

No need in supercomputers: Russian scientists suggest a PC to solve complex problems tens of times faster than with massive supercomputers June 30th, 2016

Surprising qualities of insulator ring surfaces: Surface phenomena in ring-shaped topological insulators are just as controllable as those in spheres made of the same material June 30th, 2016

Academic/Education

JPK’s NanoWizard® AFM and ForceRobot® systems are being used in the field of medical diagnostics in the Supersensitive Molecular Layer Laboratory of POSTECH in Korea June 21st, 2016

Weizmann Institute of Science Presents: Weizmann Wonder Wander - 4G - is Online June 21st, 2016

NanoLabNL boosts quality of research facilities as Dutch Toekomstfonds invests firmly June 10th, 2016

The Institute for Transfusion Medicine at the University Hospital of Duisburg-Essen in Germany uses the ZetaView from Particle Metrix to quantify extracellular vesicles June 7th, 2016

Chip Technology

Surprising qualities of insulator ring surfaces: Surface phenomena in ring-shaped topological insulators are just as controllable as those in spheres made of the same material June 30th, 2016

How cancer cells spread and squeeze through tiny blood vessels (video) June 30th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

Soft decoupling of organic molecules on metal June 23rd, 2016

Nanomedicine

Radiation-guided nanoparticles zero in on metastatic cancer July 1st, 2016

A drop of water as a model for the interplay of adhesion and stiction June 30th, 2016

How cancer cells spread and squeeze through tiny blood vessels (video) June 30th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

Announcements

Radiation-guided nanoparticles zero in on metastatic cancer July 1st, 2016

Synthesized microporous 3-D graphene-like carbons: IBS research team create carbon synthesis using zeolites as a template July 1st, 2016

No need in supercomputers: Russian scientists suggest a PC to solve complex problems tens of times faster than with massive supercomputers June 30th, 2016

Surprising qualities of insulator ring surfaces: Surface phenomena in ring-shaped topological insulators are just as controllable as those in spheres made of the same material June 30th, 2016

Photonics/Optics/Lasers

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Marrying superconductors, lasers, and Bose-Einstein condensates: Chapman University Institute for Quantum Studies (IQS) member Yutaka Shikano, Ph.D., recently had research published in Scientific Reports June 20th, 2016

A new trick for controlling emission direction in microlasers June 20th, 2016

Research partnerships

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Soft decoupling of organic molecules on metal June 23rd, 2016

FEI and University of Liverpool Announce QEMSCAN Research Initiative: University of Liverpool will utilize FEI’s QEMSCAN technology to gain a better insight into oil and gas reserves & potentially change the approach to evaluating them June 22nd, 2016

Tailored DNA shifts electrons into the 'fast lane': DNA nanowire improved by altering sequences June 22nd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic