Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Contour Energy Systems (Formerly CFX Battery) Unveils Go-to-Market Strategy, Launches New Web Site & Announces Name Change

Abstract:
Next-Generation Battery Spinoff from CalTech & CNRS Awarded Two Technology Transfer Contracts from NASA

Contour Energy Systems (Formerly CFX Battery) Unveils Go-to-Market Strategy, Launches New Web Site & Announces Name Change

Azusa, CA | Posted on March 16th, 2010

Contour Energy Systems, an innovative portable power company commercializing next-generation battery systems, is coming out of stealth mode to unveil its breakthrough advancements in new fluorine-based battery chemistries, nanomaterials science and manufacturing processes that will reshape portable power above and beyond competing lithium-ion systems. Formerly CFX Battery, the company is also announcing a name change and launch of its new web site.

A spinoff of the collaboration between CalTech and CNRS, the French National Center for Scientific Research, Contour Energy Systems is commercializing and licensing portions of its fast-growing IP portfolio. Contour's technology targets a wide range of portable power applications spanning the transportation, government and defense, medical, industrial, portable electronics and specialty application markets. Amassing a portfolio of over 60 patented and patent-pending technologies, the company is commercializing advanced primary and next-generation rechargeable battery systems in multiple form factors. The battery cells and battery packs being designed with Contour's innovative technology will achieve unprecedented levels of performance with higher power and energy densities, extended service life, and uninterrupted operation under extreme temperature conditions.

"Contour Energy's focus on and expertise in fluorine electrochemistry really distinguishes the company from other battery companies," said Sara Bradford, principal consultant, energy & power systems with Frost & Sullivan. "Because fluorine has huge potential as an energy carrier when placed in an electrochemical system, Contour is in a unique position to dramatically increase the price/performance characteristics of new advanced primary and next-generation rechargeable batteries where it matters most: power and energy density, longevity, durability and service life."

NASA Technology Transfer Contracts

In recognition of Contour Energy's advancements in lithium carbon fluoride battery technology and nanomaterials science, the National Aeronautics and Space Administration (NASA) has awarded the company two technology transfer contracts. With the first contract, NASA is engaging Contour Energy to develop high-energy primary batteries with advanced safety features capable of performing under a wide temperature range for manned space missions. To meet this goal, Contour Energy will characterize and establish the technological feasibility of a new lithium carbon-fluoride-based high capacity primary battery that offers higher rate capabilities and enhanced safety characteristics compared to conventional Li/CFx primary systems.

Potential NASA commercial applications resulting from Contour Energy's technology transfer contract include advanced primary lithium carbon fluoride battery systems that can be used for exploratory missions including power to support outposts, habitats, and science packages. The high specific energy will greatly reduce the mass of the batteries used onboard in long distance space missions.

The second NASA technology transfer contract engages Contour Energy to pursue the chemical conversion of micron-sized, nano-structured templates available from renewable resources into functional electrode materials. The objective is to establish that electrodes fabricated from these nanostructures are innovative materials providing improved electrochemical performance compared to traditional electrodes. By achieving this goal, Contour Energy will be positioned to address the significant increases in energy capacity, power capability and cycling stability necessary to meet the NASA requirements for advanced Li-ion battery technology. Key NASA applications that can take advantage of such innovative rechargeable cell chemistries and advanced electrode materials include power sources for Landers, Rovers and extravehicular activities.

The Contour Energy Difference

Contour's unique carbon fluoride battery chemistry will be applied initially to advanced primary batteries in coin cell, cylindrical, thin film and prismatic form factors. These battery systems will deliver superior price/performance across a wide range of diverse applications, including tire pressure monitoring systems, automated internal and external defibrillators, unmanned aerial vehicles, military radios, water and gas meters, bone growth stimulators, and more. A unique characteristic of Contour Energy's carbon fluoride battery technology is a proprietary process for introducing fluorine into the nano-carbon material that provides a fundamentally different atomic structure than traditional carbon fluoride materials. This new structure, coupled with the use of new nanomaterials, affords significant advantages over all existing battery types, including substantial increases in energy and power densities, reliable operation under extreme conditions, an extended shelf life and avoidance of overheating, any of which can be optimized for specific applications.

Contour Energy's carbon fluoride chemistry can be customized during key steps in the manufacturing process to alter the cathode's physical structure at the atomic level. This Tunable Cathode™ also plays a pivotal role in providing customers with batteries featuring an optimal combination of higher energy and/or power densities, and discharge rates. This affords Contour Energy a significant competitive advantage because every application has unique operating needs that cannot be satisfied fully by off-the-shelf batteries.

"Our goal of ‘reshaping portable power' is right on track," said Joe Fisher, CEO of Contour Energy Systems. "We've assembled a formidable, world-class management and R&D team second to none with a substantial and fast-growing IP portfolio that will fundamentally change the price/performance characteristics of next generation primary and rechargeable batteries."

####

About Contour Energy Systems
Contour Energy Systems is an innovative portable power company commercializing customizable battery technologies for a wide range of cross-industry applications. Contour’s next-generation battery systems are designed to deliver unprecedented improvements in energy and power density, and are capable of performing in extreme operating conditions at significantly improved costs. Founded through the collaboration of CalTech and CNRS, the French National Center for Scientific Research, the company combines expertise in nano-materials science, patented Fluorine-based battery chemistries and manufacturing processes to significantly advance the state of portable power. Headquartered in Azusa, CA, Contour Energy is managed by a world-class team of battery industry leaders from CalTech, Energizer, Duracell, ConocoPhillips, Hewlett-Packard and Ultralife. The company is privately held with funding from CMEA Capital, Harris and Harris, Schlumberger and US Venture Partners.

For more information, please click here

Contacts:
Gallagher Group Communications
Kevin Gallagher
510-599-0416

Copyright © Contour Energy Systems

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Chemistry

A new way to display the 3-D structure of molecules: Metal-organic frameworks provide a new platform for solving the structure of hard-to-study samples August 21st, 2016

Researchers watch catalysts at work August 19th, 2016

Pokhara, the second largest city of Nepal, to host its first ever International Meeting on Material Sciences and Engineering August 15th, 2016

'Liquid fingerprinting' technique instantly identifies unknown liquids: Ability to instantly identify unknown liquids in the field could aid first responders, improve plant safety August 4th, 2016

Academic/Education

AIM Photonics Announces Release of Process Design Kit (PDK) for Integrated Silicon Photonics Design August 25th, 2016

Nanotech Security Featured by Simon Fraser University: Company's Anti-Counterfeiting Technology Developed With the Help of University's 4D LABS Materials Research Institute August 21st, 2016

W.M. Keck Foundation awards Cal State LA a $375,000 research and education grant August 4th, 2016

Thomas Swan and NGI announce unique partnership July 28th, 2016

Announcements

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Patents/IP/Tech Transfer/Licensing

Industrial Nanotech, Inc. Provides Shareholder Update August 22nd, 2016

Starpharma initiates new DEP™ drug delivery program with AstraZeneca July 27th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Research team led by NUS scientists develop plastic flexible magnetic memory device: Novel technique to implant high-performance magnetic memory chip on a flexible plastic surface without compromising performance July 21st, 2016

Military

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Nanoparticles that speed blood clotting may someday save lives August 23rd, 2016

Curbing the life-long effects of traumatic brain injury August 19th, 2016

Lab team spins ginger into nanoparticles to heal inflammatory bowel disease August 19th, 2016

Automotive/Transportation

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

Researchers watch catalysts at work August 19th, 2016

Stanford-led team reveals nanoscale secrets of rechargeable batteries August 8th, 2016

New X-Ray microscopy technique images nanoscale workings of rechargeable batteries: Method developed at Berkeley Lab's Advanced Light Source could help researchers improve battery performance August 7th, 2016

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Stretchy supercapacitors power wearable electronics August 25th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Lehigh engineer discovers a high-speed nano-avalanche: New findings published in the Journal of Electrochemical Society about the process involving transformations in glass that occur under intense electrical and thermal conditions could lead the way to more energy-efficient glas August 24th, 2016

Lithium-ion batteries: Capacity might be increased by 6 times August 9th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic