Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Contour Energy Systems (Formerly CFX Battery) Unveils Go-to-Market Strategy, Launches New Web Site & Announces Name Change

Abstract:
Next-Generation Battery Spinoff from CalTech & CNRS Awarded Two Technology Transfer Contracts from NASA

Contour Energy Systems (Formerly CFX Battery) Unveils Go-to-Market Strategy, Launches New Web Site & Announces Name Change

Azusa, CA | Posted on March 16th, 2010

Contour Energy Systems, an innovative portable power company commercializing next-generation battery systems, is coming out of stealth mode to unveil its breakthrough advancements in new fluorine-based battery chemistries, nanomaterials science and manufacturing processes that will reshape portable power above and beyond competing lithium-ion systems. Formerly CFX Battery, the company is also announcing a name change and launch of its new web site.

A spinoff of the collaboration between CalTech and CNRS, the French National Center for Scientific Research, Contour Energy Systems is commercializing and licensing portions of its fast-growing IP portfolio. Contour's technology targets a wide range of portable power applications spanning the transportation, government and defense, medical, industrial, portable electronics and specialty application markets. Amassing a portfolio of over 60 patented and patent-pending technologies, the company is commercializing advanced primary and next-generation rechargeable battery systems in multiple form factors. The battery cells and battery packs being designed with Contour's innovative technology will achieve unprecedented levels of performance with higher power and energy densities, extended service life, and uninterrupted operation under extreme temperature conditions.

"Contour Energy's focus on and expertise in fluorine electrochemistry really distinguishes the company from other battery companies," said Sara Bradford, principal consultant, energy & power systems with Frost & Sullivan. "Because fluorine has huge potential as an energy carrier when placed in an electrochemical system, Contour is in a unique position to dramatically increase the price/performance characteristics of new advanced primary and next-generation rechargeable batteries where it matters most: power and energy density, longevity, durability and service life."

NASA Technology Transfer Contracts

In recognition of Contour Energy's advancements in lithium carbon fluoride battery technology and nanomaterials science, the National Aeronautics and Space Administration (NASA) has awarded the company two technology transfer contracts. With the first contract, NASA is engaging Contour Energy to develop high-energy primary batteries with advanced safety features capable of performing under a wide temperature range for manned space missions. To meet this goal, Contour Energy will characterize and establish the technological feasibility of a new lithium carbon-fluoride-based high capacity primary battery that offers higher rate capabilities and enhanced safety characteristics compared to conventional Li/CFx primary systems.

Potential NASA commercial applications resulting from Contour Energy's technology transfer contract include advanced primary lithium carbon fluoride battery systems that can be used for exploratory missions including power to support outposts, habitats, and science packages. The high specific energy will greatly reduce the mass of the batteries used onboard in long distance space missions.

The second NASA technology transfer contract engages Contour Energy to pursue the chemical conversion of micron-sized, nano-structured templates available from renewable resources into functional electrode materials. The objective is to establish that electrodes fabricated from these nanostructures are innovative materials providing improved electrochemical performance compared to traditional electrodes. By achieving this goal, Contour Energy will be positioned to address the significant increases in energy capacity, power capability and cycling stability necessary to meet the NASA requirements for advanced Li-ion battery technology. Key NASA applications that can take advantage of such innovative rechargeable cell chemistries and advanced electrode materials include power sources for Landers, Rovers and extravehicular activities.

The Contour Energy Difference

Contour's unique carbon fluoride battery chemistry will be applied initially to advanced primary batteries in coin cell, cylindrical, thin film and prismatic form factors. These battery systems will deliver superior price/performance across a wide range of diverse applications, including tire pressure monitoring systems, automated internal and external defibrillators, unmanned aerial vehicles, military radios, water and gas meters, bone growth stimulators, and more. A unique characteristic of Contour Energy's carbon fluoride battery technology is a proprietary process for introducing fluorine into the nano-carbon material that provides a fundamentally different atomic structure than traditional carbon fluoride materials. This new structure, coupled with the use of new nanomaterials, affords significant advantages over all existing battery types, including substantial increases in energy and power densities, reliable operation under extreme conditions, an extended shelf life and avoidance of overheating, any of which can be optimized for specific applications.

Contour Energy's carbon fluoride chemistry can be customized during key steps in the manufacturing process to alter the cathode's physical structure at the atomic level. This Tunable Cathode™ also plays a pivotal role in providing customers with batteries featuring an optimal combination of higher energy and/or power densities, and discharge rates. This affords Contour Energy a significant competitive advantage because every application has unique operating needs that cannot be satisfied fully by off-the-shelf batteries.

"Our goal of ‘reshaping portable power' is right on track," said Joe Fisher, CEO of Contour Energy Systems. "We've assembled a formidable, world-class management and R&D team second to none with a substantial and fast-growing IP portfolio that will fundamentally change the price/performance characteristics of next generation primary and rechargeable batteries."

####

About Contour Energy Systems
Contour Energy Systems is an innovative portable power company commercializing customizable battery technologies for a wide range of cross-industry applications. Contour’s next-generation battery systems are designed to deliver unprecedented improvements in energy and power density, and are capable of performing in extreme operating conditions at significantly improved costs. Founded through the collaboration of CalTech and CNRS, the French National Center for Scientific Research, the company combines expertise in nano-materials science, patented Fluorine-based battery chemistries and manufacturing processes to significantly advance the state of portable power. Headquartered in Azusa, CA, Contour Energy is managed by a world-class team of battery industry leaders from CalTech, Energizer, Duracell, ConocoPhillips, Hewlett-Packard and Ultralife. The company is privately held with funding from CMEA Capital, Harris and Harris, Schlumberger and US Venture Partners.

For more information, please click here

Contacts:
Gallagher Group Communications
Kevin Gallagher
510-599-0416

Copyright © Contour Energy Systems

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

Chemistry

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

Sandia develops math techniques to improve computational efficiency in quantum chemistry May 5th, 2017

Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook April 27th, 2017

Shedding light on the absorption of light by titanium dioxide April 14th, 2017

Academic/Education

MIT Energy Initiative awards 10 seed fund grants for early-stage energy research May 4th, 2017

Bar-Ilan University to set up quantum research center May 1st, 2017

California Research Alliance by BASF establishes more than 25 research projects in three years April 26th, 2017

SUNY Polytechnic Institute Announces Total of 172 Teams Selected to Compete in Solar in Your Community Challenge: Teams from 40 states, plus Washington, DC, 2 Territories, and 4 American Indian Reservations, Will Deploy Solar in Underserved Communities April 20th, 2017

Announcements

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

Patents/IP/Tech Transfer/Licensing

NREL’s Advanced Atomic Layer Deposition Enables Lithium-Ion Battery Technology: May 10th, 2017

Forge Nano 2017: 1st Quarter Media Update April 20th, 2017

Making Batteries From Waste Glass Bottles: UCR researchers are turning glass bottles into high performance lithium-ion batteries for electric vehicles and personal electronics April 19th, 2017

'Neuron-reading' nanowires could accelerate development of drugs for neurological diseases April 12th, 2017

Military

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Gas gives laser-induced graphene super properties: Rice University study shows inexpensive material can be superhydrophilic or superhydrophobic May 15th, 2017

'Hot' electrons don't mind the gap: Rice University scientists find nanogaps in plasmonic gold wires enhance voltage when excited May 8th, 2017

Automotive/Transportation

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

Self-healing tech charges up performance for silicon-containing battery anodes May 15th, 2017

UnitySC Announces Wafer Thinning Inspection System; Win from Power Semiconductor IDM for Automotive: Leading IDM Selects New 4See Series Automated Defect Inspection Platform for Power Semiconductor Automotive Applications May 11th, 2017

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Self-healing tech charges up performance for silicon-containing battery anodes May 15th, 2017

Gas gives laser-induced graphene super properties: Rice University study shows inexpensive material can be superhydrophilic or superhydrophobic May 15th, 2017

Is this the 'holey' grail of batteries? May 12th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project