Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Contour Energy Systems (Formerly CFX Battery) Unveils Go-to-Market Strategy, Launches New Web Site & Announces Name Change

Abstract:
Next-Generation Battery Spinoff from CalTech & CNRS Awarded Two Technology Transfer Contracts from NASA

Contour Energy Systems (Formerly CFX Battery) Unveils Go-to-Market Strategy, Launches New Web Site & Announces Name Change

Azusa, CA | Posted on March 16th, 2010

Contour Energy Systems, an innovative portable power company commercializing next-generation battery systems, is coming out of stealth mode to unveil its breakthrough advancements in new fluorine-based battery chemistries, nanomaterials science and manufacturing processes that will reshape portable power above and beyond competing lithium-ion systems. Formerly CFX Battery, the company is also announcing a name change and launch of its new web site.

A spinoff of the collaboration between CalTech and CNRS, the French National Center for Scientific Research, Contour Energy Systems is commercializing and licensing portions of its fast-growing IP portfolio. Contour's technology targets a wide range of portable power applications spanning the transportation, government and defense, medical, industrial, portable electronics and specialty application markets. Amassing a portfolio of over 60 patented and patent-pending technologies, the company is commercializing advanced primary and next-generation rechargeable battery systems in multiple form factors. The battery cells and battery packs being designed with Contour's innovative technology will achieve unprecedented levels of performance with higher power and energy densities, extended service life, and uninterrupted operation under extreme temperature conditions.

"Contour Energy's focus on and expertise in fluorine electrochemistry really distinguishes the company from other battery companies," said Sara Bradford, principal consultant, energy & power systems with Frost & Sullivan. "Because fluorine has huge potential as an energy carrier when placed in an electrochemical system, Contour is in a unique position to dramatically increase the price/performance characteristics of new advanced primary and next-generation rechargeable batteries where it matters most: power and energy density, longevity, durability and service life."

NASA Technology Transfer Contracts

In recognition of Contour Energy's advancements in lithium carbon fluoride battery technology and nanomaterials science, the National Aeronautics and Space Administration (NASA) has awarded the company two technology transfer contracts. With the first contract, NASA is engaging Contour Energy to develop high-energy primary batteries with advanced safety features capable of performing under a wide temperature range for manned space missions. To meet this goal, Contour Energy will characterize and establish the technological feasibility of a new lithium carbon-fluoride-based high capacity primary battery that offers higher rate capabilities and enhanced safety characteristics compared to conventional Li/CFx primary systems.

Potential NASA commercial applications resulting from Contour Energy's technology transfer contract include advanced primary lithium carbon fluoride battery systems that can be used for exploratory missions including power to support outposts, habitats, and science packages. The high specific energy will greatly reduce the mass of the batteries used onboard in long distance space missions.

The second NASA technology transfer contract engages Contour Energy to pursue the chemical conversion of micron-sized, nano-structured templates available from renewable resources into functional electrode materials. The objective is to establish that electrodes fabricated from these nanostructures are innovative materials providing improved electrochemical performance compared to traditional electrodes. By achieving this goal, Contour Energy will be positioned to address the significant increases in energy capacity, power capability and cycling stability necessary to meet the NASA requirements for advanced Li-ion battery technology. Key NASA applications that can take advantage of such innovative rechargeable cell chemistries and advanced electrode materials include power sources for Landers, Rovers and extravehicular activities.

The Contour Energy Difference

Contour's unique carbon fluoride battery chemistry will be applied initially to advanced primary batteries in coin cell, cylindrical, thin film and prismatic form factors. These battery systems will deliver superior price/performance across a wide range of diverse applications, including tire pressure monitoring systems, automated internal and external defibrillators, unmanned aerial vehicles, military radios, water and gas meters, bone growth stimulators, and more. A unique characteristic of Contour Energy's carbon fluoride battery technology is a proprietary process for introducing fluorine into the nano-carbon material that provides a fundamentally different atomic structure than traditional carbon fluoride materials. This new structure, coupled with the use of new nanomaterials, affords significant advantages over all existing battery types, including substantial increases in energy and power densities, reliable operation under extreme conditions, an extended shelf life and avoidance of overheating, any of which can be optimized for specific applications.

Contour Energy's carbon fluoride chemistry can be customized during key steps in the manufacturing process to alter the cathode's physical structure at the atomic level. This Tunable Cathode™ also plays a pivotal role in providing customers with batteries featuring an optimal combination of higher energy and/or power densities, and discharge rates. This affords Contour Energy a significant competitive advantage because every application has unique operating needs that cannot be satisfied fully by off-the-shelf batteries.

"Our goal of ‘reshaping portable power' is right on track," said Joe Fisher, CEO of Contour Energy Systems. "We've assembled a formidable, world-class management and R&D team second to none with a substantial and fast-growing IP portfolio that will fundamentally change the price/performance characteristics of next generation primary and rechargeable batteries."

####

About Contour Energy Systems
Contour Energy Systems is an innovative portable power company commercializing customizable battery technologies for a wide range of cross-industry applications. Contour’s next-generation battery systems are designed to deliver unprecedented improvements in energy and power density, and are capable of performing in extreme operating conditions at significantly improved costs. Founded through the collaboration of CalTech and CNRS, the French National Center for Scientific Research, the company combines expertise in nano-materials science, patented Fluorine-based battery chemistries and manufacturing processes to significantly advance the state of portable power. Headquartered in Azusa, CA, Contour Energy is managed by a world-class team of battery industry leaders from CalTech, Energizer, Duracell, ConocoPhillips, Hewlett-Packard and Ultralife. The company is privately held with funding from CMEA Capital, Harris and Harris, Schlumberger and US Venture Partners.

For more information, please click here

Contacts:
Gallagher Group Communications
Kevin Gallagher
510-599-0416

Copyright © Contour Energy Systems

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Chemistry

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Scientists shrink electron gun to matchbox size: Terahertz technology has the potential to enable new applications November 25th, 2016

Academic/Education

Oxford Nanoimaging report on how the Nanoimager, a desktop microscope delivering single molecule, super-resolution performance, is being applied at the MRC Centre for Molecular Bacteriology & Infection November 22nd, 2016

The University of Applied Sciences in Upper Austria uses Deben tensile stages as an integral part of their computed tomography research and testing facility October 18th, 2016

Enterprise In Space Partners with Sketchfab and 3D Hubs for NewSpace Education October 13th, 2016

New Agricultural Research Center Debuts at UCF October 12th, 2016

Announcements

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Patents/IP/Tech Transfer/Licensing

Keystone Nano Announces The US FDA Has Awarded Orphan Drug Designation For Ceramides For The Treatment Of Liver Cancer November 8th, 2016

Leti to Tackle Tomorrow's Research Strategies with Stanford University’s SystemX Alliance: French R&D Center Is the First Research Institute to Join the Collaboration and Provides Bridges Between Academia and Industry, Leveraging Alliance’s Potential October 4th, 2016

Picosun patents ALD nanolaminate to prevent electronics from overheating September 28th, 2016

NIST Patents Single-Photon Detector for Potential Encryption and Sensing Apps September 16th, 2016

Military

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Physics, photosynthesis and solar cells: Researchers combine quantum physics and photosynthesis to make discovery that could lead to highly efficient, green solar cells November 30th, 2016

New method for analyzing crystal structure: Exotic materials called photonic crystals reveal their internal characteristics with new method November 30th, 2016

Inside tiny tubes, water turns solid when it should be boiling: MIT researchers discover astonishing behavior of water confined in carbon nanotubes November 30th, 2016

Automotive/Transportation

'Back to the Future' inspires solar nanotech-powered clothing November 15th, 2016

Nanocellulose in medicine and green manufacturing: American University professor develops method to improve performance of cellulose nanocrystals November 7th, 2016

Diamond nanothread: Versatile new material could prove priceless for manufacturing: Would you dress in diamond nanothreads? It's not as far-fetched as you might think November 3rd, 2016

Hybrid nanostructures hold hydrogen well: Rice University scientists say boron nitride-graphene hybrid may be right for next-gen green cars October 25th, 2016

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

A Phone That Charges in Seconds? UCF Scientists Bring it Closer to Reality November 21st, 2016

'Back to the Future' inspires solar nanotech-powered clothing November 15th, 2016

Vesper a Finalist for Two ACE Awards: Ultimate Products and Innovator of the Year -- Industry’s first piezoelectric MEMS microphone and Vesper CTO Bobby Littrell recognized for prestigious electronics-industry awards November 10th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project