Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Scavenging energy waste to turn water into hydrogen fuel

Xiaochun Li and Huifang Xu
Xiaochun Li and Huifang Xu

Abstract:
Materials scientists at the University of Wisconsin-Madison have designed a way to harvest small amounts of waste energy and harness them to turn water into usable hydrogen fuel. The process is simple, efficient and recycles otherwise-wasted energy into a usable form.

By Jill Sakai

Scavenging energy waste to turn water into hydrogen fuel

Madison, WI | Posted on March 13th, 2010

"This study provides a simple and cost-effective technology for direct water splitting that may generate hydrogen fuels by scavenging energy wastes such as noise or stray vibrations from the environment," the authors write in a new paper, published March 2 in the Journal of Physical Chemistry Letters. "This new discovery may have potential implications in solving the challenging energy and environmental issues that we are facing today and in the future."

The researchers, led by UW-Madison geologist and crystal specialist Huifang Xu, grew nanocrystals of two common crystals, zinc oxide and barium titanate, and placed them in water. When pulsed with ultrasonic vibrations, the nanofibers flexed and catalyzed a chemical reaction to split the water molecules into hydrogen and oxygen. UW-Madison Mechanical Engineering Professor Xiaochun Li lent theoretical and experimental expertise to the ultrasonic vibrations part of the research.

When the fibers bend, asymmetries in their crystal structures generate positive and negative charges and create an electrical potential. This phenomenon, called the piezoelectric effect, has been well known in certain crystals for more than a century and is the driving force behind quartz clocks and other applications.

Xu, who is part of the Materials Science Program administered through the UW-Madison College of Engineering, and his colleagues applied the same idea to the nanocrystal fibers. "The bulk materials are brittle, but at the nanoscale they are flexible," Xu says, like the difference between fiberglass and a pane of glass.

Smaller fibers bend more easily than larger crystals and therefore also produce electric charges easily. So far, the researchers have achieved an impressive 18 percent efficiency with the nanocrystals, higher than most experimental energy sources.

In addition, Xu says, "because we can tune the fiber and plate sizes, we can use even small amounts of [mechanical] noise — like a vibration or water flowing to bend the fibers and plates. With this kind of technology, we can scavenge energy waste and convert it into useful chemical energy."

Rather than harvest this electrical energy directly, the scientists took a novel approach and used the energy to break the chemical bonds in water and produce oxygen and hydrogen gas.

"This is a new phenomenon, converting mechanical energy directly to chemical energy," Xu says, calling it a piezoelectrochemical (PZEC) effect.

The chemical energy of hydrogen fuel is more stable than the electric charge, he explains. It is relatively easy to store and will not lose potency over time.

With the right technology, Xu envisions this method being useful for generating small amounts of power from a multitude of small sources — for example, walking could charge a cell phone or music player and breezes could power streetlights.

"We have limited areas to collect large energy differences, like a waterfall or a big dam," he says. "But we have lots of places with small energies. If we can harvest that energy, it would be tremendous."

The new paper is co-authored by UW-Madison graduate student Kuang-Sheng Hong and research scientist Hiromi Konishi, who were co-supported by Li.

Xu's research is supported by grants from the UW-Madison Graduate School, National Science Foundation, NASA Astrobiology Institute and the U.S. Department of Energy.

####

For more information, please click here

Copyright © University of Wisconsin-Madison

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Possible Futures

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Nanotechnology in Energy Applications Market Research Report 2014-2018: Radiant Insights, Inc January 15th, 2015

'Mind the gap' between atomically thin materials December 23rd, 2014

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Academic/Education

Rice's Naomi Halas to direct Smalley Institute: Optics pioneer will lead Rice's multidisciplinary science institute January 15th, 2015

SUNY Board Appoints Dr. Alain Kaloyeros as Founding President of SUNY Polytechnic Institute January 13th, 2015

CNSE's Smart System Technology & Commercialization Center Successfully Recertifies as ISO 9001:2008 January 12th, 2015

SUNY Poly Now Accepting Applications to the Colleges of Nanoscale Science and Engineering for Fall 2015: Full Scholarships Available to Incoming CNSE Students January 7th, 2015

Discoveries

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Announcements

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Environment

Iranian Scientists Use MOFs to Eliminate Dye Pollutants January 29th, 2015

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

Magnetic Nanosorbents Able to Eliminate Chemical Contaminants January 19th, 2015

Malaysian Nanotechnology Company Nanopac Innovation Ltd. lists on the NSX January 19th, 2015

Energy

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

Crystal light: New light-converting materials point to cheaper, more efficient solar power: University of Toronto engineers study first single crystal perovskites for new solar cell and LED applications January 30th, 2015

Los Alamos Develops New Technique for Growing High-Efficiency Perovskite Solar Cells: Researchers’ crystal-production insights resolve manufacturing difficulty January 29th, 2015

Carbon nanoballs can greatly contribute to sustainable energy supply January 27th, 2015

Water

Nanoparticles for clean drinking water January 17th, 2015

Going with the flow January 16th, 2015

Rice's Naomi Halas to direct Smalley Institute: Optics pioneer will lead Rice's multidisciplinary science institute January 15th, 2015

Liquids and glasses relax, too. But not like you thought January 15th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE