Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Obama's budget may jump start future electric cars

Khalil Amine, manager of the Advanced Battery Technology Group at Argonne, said the Li-air battery will produce at least five times more energy than lithium-ion batteries used in today's hybrid cars.  Leslie Streicher/MEDILL
Khalil Amine, manager of the Advanced Battery Technology Group at Argonne, said the Li-air battery will produce at least five times more energy than lithium-ion batteries used in today's hybrid cars. Leslie Streicher/MEDILL

Abstract:
Scientists hope funding to develop an electric car battery that breathes air and could eliminate gasoline in the process will come with the $532 million allocated for Argonne National Laboratory in the proposed federal budget.

By Leslie Streicher

Obama's budget may jump start future electric cars

Chicago, IL | Posted on March 1st, 2010

A single car can emit tons of greenhouse gases into the atmosphere each year. To curb the threat of these emissions, President Obama submitted a $28.4 billion fiscal year 2011 budget request for the Department of Energy to focus on research and development of clean and efficient energy.

Researchers in the Advanced Lithium Battery program at Argonne, operated by the DOE, are creating a pioneering lithium-air battery for electric cars. It promises to deliver at least five time more energy than lithium-ion batteries now used in hybrid cars.

"The first generation of completely electric vehicles will use lithium-air batteries," said Jeffrey Chamberlain, of the Office of Technology Transfer at Argonne.

Known as Li-air for short, the batteries mean more mileage per charge.

"The Li-ion battery can provide a 100 mile range in electric cars now," said Khalil Amine, a material scientist and manager of the Advanced Battery Technology Group at Argonne. "The Li-air will enable at least 400 to 500 miles."

The Li-air initiative is part of an Argonne Laboratory-Directed Research and Development grand challenge program and will pave the way for a new generation of advanced high-energy battery technology.

And although Li-air batteries have already been around for more than 20 years as primary-use, or one-time use, batteries, Amine said the Argonne team is working to improve the model by making it rechargeable through home outlets.

Li-air batteries combine lithium ions and oxygen to create a lithium oxide, or peroxide, which produces energy through electron transfer. And while Li-ion batteries can deliver about 180 watt-hours of electricity per kilogram weight of the battery, Li-air batteries could be able to reach 11,000 watt-hours per kilogram.

"Lithium-air has approximately the same energy of a [typical car] engine," Amine said.

Even better, the Li-air battery uses air or pure oxygen to stimulate energy production.

As Chamberlain explained it, the battery literally breathes.

Oxygen enters the battery through the porous cathode and reacts with the lithium ions released from the anode. This reaction causes electrons to break free from the lithium ions and creates energy flow.

But despite many advances in research, Amine said breakthroughs are still needed to solve some lingering problems.

"The catalyst being used right now is not stable," he said. "Stability is important because the catalyst needs to remain highly active in order to have the chemical reaction take place reversibly."

The metal used as the catalyst, manganese oxide, starts to change after numerous chemical reactions between oxygen and lithium ions take place. This makes the lifespan of the battery unreasonably short.

"It's like pancakes on a frying pan," Chamberlain said. "The frying pan's surface changes after cooking the first pancake and the second pancake won't be cooked the same way as the first."

But Amine said he is confident the problems with Li-air will be solved in the future.

"Lithium-ion had a lot of problems 15 years ago," he said. "But now there are a lot of people who have worked on it and developed it. Li-air will follow the same path."

And in order to expedite the solution process, Amine said more teams are needed to improve Li-air research.

"We have initiated a good program and team at Argonne," he said. "But we want to keep collaborating and eventually bring in more outside expertise to join our team at Argonne. It can be a global effort and we will lead it."

And when can consumers expect to see the battery in cars and on store shelves?

Chamberlain said, although commercial release of Li-air is not expected in the near term, Obama's requested budget for 2011 will hopefully speed up the process.

"In the big scheme of things, the budget really is taking seriously the funding for science and technology and what it can do for national defense and the economy," he said.

"If the Li-air and Li-ion are the same size and the same price, you are essentially getting more for your money if you buy the Li-air."

####

About Northwestern University, Medill School
Medill Reports is written and produced by graduate journalism students at Northwestern Universitys Medill school.

Each day, students uncover, report, write, file and produce news stories for both Web and print for use by various media outlets in Chicago and the surrounding suburbs. Most stories include photography as well as multimedia components such as audio, Flash video and slideshows.

For more information, please click here

Contacts:
Chicago Newsroom
105 W. Adams St., Suite 200 Chicago, IL 60603

News Desk
(312) 503-4100
(312) 503-4200
(312) 503-4040 (Fax)

Copyright © Northwestern University, Medill School

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Oxford Instruments systems now facilitate water purification technology September 27th, 2016

Dr Barbara Armbruster promoted to Worldwide Sales and Marketing Director for XEI Scientific September 27th, 2016

Fighting cancer with sticky nanoparticles September 27th, 2016

Gold nanoparticles conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2 mediated pathway in breast cancer September 27th, 2016

Chemistry

Chains of nanogold forged with atomic precision September 23rd, 2016

Carbon-coated iron catalyst structure could lead to more-active fuel cells September 15th, 2016

Researchers build world's largest database of crystal surfaces and shapes September 14th, 2016

On-surface chemistry leads to novel products: On-surface chemical Reactions can lead to novel chemical compounds not yet synthesized by solution chemistry. September 13th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

PHENOMEN is a FET-Open Research Project aiming to lay the foundations a new information technology September 19th, 2016

NIST Patents Single-Photon Detector for Potential Encryption and Sensing Apps September 16th, 2016

Possible Futures

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

Researchers at the Catalan Institute of Nanoscience and Nanotechnology show that bending semiconductors generates electricity September 26th, 2016

Chains of nanogold forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Academic/Education

PHENOMEN is a FET-Open Research Project aiming to lay the foundations a new information technology September 19th, 2016

AIM Photonics Announces Release of Process Design Kit (PDK) for Integrated Silicon Photonics Design August 25th, 2016

Nanotech Security Featured by Simon Fraser University: Company's Anti-Counterfeiting Technology Developed With the Help of University's 4D LABS Materials Research Institute August 21st, 2016

W.M. Keck Foundation awards Cal State LA a $375,000 research and education grant August 4th, 2016

Announcements

Oxford Instruments systems now facilitate water purification technology September 27th, 2016

Dr Barbara Armbruster promoted to Worldwide Sales and Marketing Director for XEI Scientific September 27th, 2016

Fighting cancer with sticky nanoparticles September 27th, 2016

Gold nanoparticles conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2 mediated pathway in breast cancer September 27th, 2016

Automotive/Transportation

Carbon-coated iron catalyst structure could lead to more-active fuel cells September 15th, 2016

GLOBALFOUNDRIES Launches Embedded MRAM on 22FDX Platform: High-performance embedded non-volatile memory solution is ideally suited for emerging applications in advanced IoT and automotive September 15th, 2016

GLOBALFOUNDRIES Extends FDX Roadmap with 12nm FD-SOI Technology: 12FDXTM delivers full-node scaling, ultra-low power, and software-controlled performance on demand September 8th, 2016

Imperial College use Kleindiek micromanipulators in their research into electrochemical energy devices September 6th, 2016

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Semiconducting inorganic double helix: New flexible semiconductor for electronics, solar technology and photo catalysis September 15th, 2016

Researchers design solids that control heat with spinning superatoms: Carnegie Mellon University and Columbia University collaborators discover the cause of vastly different thermal conductivities in superatomic structural analogues September 8th, 2016

Fish 'biowaste' converted to piezoelectric energy harvesters: Jadavpur University researchers in India devised a way to recycle fish byproducts into an energy harvester for self-powered electronics September 8th, 2016

Imperial College use Kleindiek micromanipulators in their research into electrochemical energy devices September 6th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic