Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Hemmer publishes paper in Nature Nanotechnology

Dr. Phillip Hemmer
Dr. Phillip Hemmer

Abstract:
Dr. Phillip Hemmer and several co-authors have published a paper in the prestigious research publication Nature Nanotechnology.

by Deana Totzke

Hemmer publishes paper in Nature Nanotechnology

College Station, TX | Posted on February 27th, 2010

"Basically this is the first demonstration of nano-photonic structures on diamond that are suitable for applications such as quantum computing, ultrasensitive nanoscale magnetometers, or future quantum optics applications like single atom nonlinear optics and solid state lasers," Hemmer said. "Many of these applications make use of single color centers like the nitrogen-vacancy (NV).

"Previous demonstrations of diamond photonic nanostructures showed nice electron microscope pictures along with claims that these structures could be eventually used for quantum optics applications, but in reality the background fluorescence of these nanostructures was much too high to allow single color centers to be observed. In contrast the structures we report on in this paper easily allow single NV color centers to be seen," Hemmer said.

The full listing of authors for this paper is Thomas M. Babinec, Birgit J. M. Hausmann, Mughees Khan, Yinan Zhang, Jeronimo R. Maze, Philip R. Hemmer and Marko Loncar.

Hemmer, a professor in the Department of Electrical and Computer Engineering at Texas A&M University, joined the department in January 2002. He received his bachelor's degree from the University of Dayton in 1976 and his Ph.D. in physics from MIT in 1984. His interest areas are in solid materials for quantum optics, especially "dark resonance" excitation, materials and techniques for resonant nonlinear optics, phase-conjugate-based turbulence aberration and compensation, spectral holeburning materials and techniques for ultra-dense memories and high temperature operation, quantum computing in solid materials, quantum communication and teleportation in trapped atoms, holographic optical memory materials, smart pixels devices, optical correlators, photorefractive applications, atomic clocks and laser trapping and cooling.

Honors include receiving the Ruth and William Neely '52/Dow Chemical Fellowship, an outstanding faculty award from the department, an NSF Fellowship, the Air Force Research Laboratory Chief Scientist's award and the AFOSR Star Team Award three times. He also is a member of the Optical Society of America, S.P.I.E. and American Physical Society.

Nature Nanotechnology is a multidisciplinary journal that publishes papers of the highest quality and significance in all areas of nanoscience and nanotechnology. The journal covers research into the design, characterization and production of structures, devices and systems that involve the manipulation and control of materials and phenomena at atomic, molecular and macromolecular scales. Both bottom-up and top-down approaches and combinations of the two are covered.

The paper, "A diamond nanowire single-photon source," can be found at www.nature.com/nnano/journal/vaop/ncurrent/full/nnano.2010.6.html

####

About Texas A&M University
The mission of Texas A&M Engineering is to serve Texas, the nation and the global community by providing engineering graduates who are well founded in engineering fundamentals, instilled with the highest standards of professional and ethical behavior, and are prepared to meet the complex technical challenges of society.

For more information, please click here

Contacts:
Deana Totzke


For media relations contact
Tim Schnettler

(979) 458-2277

Copyright © Texas A&M University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Animal study shows flexible, dissolvable silicon device promising for brain monitoring: Other applications include post-operative observation for vascular, cardiac, and orthopaedic procedures, finds Penn study May 5th, 2016

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

Clues on the path to a new lithium battery technology: Charging produces highly reactive singlet oxygen in lithium air batteries May 5th, 2016

Possible Futures

Animal study shows flexible, dissolvable silicon device promising for brain monitoring: Other applications include post-operative observation for vascular, cardiac, and orthopaedic procedures, finds Penn study May 5th, 2016

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

Clues on the path to a new lithium battery technology: Charging produces highly reactive singlet oxygen in lithium air batteries May 5th, 2016

Academic/Education

Oxford Instruments Asylum Research and McGill University Announce the McGill AFM Summer School and Workshop, May 12-13, 2016 May 4th, 2016

JPK reports on the use of a NanoWizard AFM system at the University of Kaiserslautern to study the interaction of bacteria with microstructured surfaces April 28th, 2016

The Ottawa Hospital Research Institute uses the ZetaView from Particle Metrix to study membrane microparticles as potential biomarkers for underlying diseases April 12th, 2016

FEI Partners with Five Pharmaceutical Companies, the Medical Research Council and the University of Cambridge to form Cryo-EM Research Consortium April 5th, 2016

Quantum Computing

A compact, efficient single photon source that operates at ambient temperatures on a chip: Highly directional single photon source concept is expected to lead to a significant progress in producing compact, cheap, and efficient sources of quantum information bits for future appls May 3rd, 2016

Spintronics for future information technologies: Spin currents in topological insulators controlled May 2nd, 2016

Researchers create a first frequency comb of time-bin entangled qubits: Discovery is a significant step toward multi-channel quantum communication and higher capacity quantum computers April 28th, 2016

Superfast light source made from artificial atom April 28th, 2016

Announcements

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

Clues on the path to a new lithium battery technology: Charging produces highly reactive singlet oxygen in lithium air batteries May 5th, 2016

Unique nano-capsules promise the targeted drug delivery: Russian scientists created unique nano-capsules for the targeted drug delivery May 5th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Animal study shows flexible, dissolvable silicon device promising for brain monitoring: Other applications include post-operative observation for vascular, cardiac, and orthopaedic procedures, finds Penn study May 5th, 2016

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

Clues on the path to a new lithium battery technology: Charging produces highly reactive singlet oxygen in lithium air batteries May 5th, 2016

Photonics/Optics/Lasers

Molybdenum disulfide holds promise for light absorption: Rice researchers probe light-capturing properties of atomically thin MoS2 May 5th, 2016

A compact, efficient single photon source that operates at ambient temperatures on a chip: Highly directional single photon source concept is expected to lead to a significant progress in producing compact, cheap, and efficient sources of quantum information bits for future appls May 3rd, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Researchers create a first frequency comb of time-bin entangled qubits: Discovery is a significant step toward multi-channel quantum communication and higher capacity quantum computers April 28th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic