Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > UW-Madison physicists build basic quantum computing circuit

Abstract:
Exerting delicate control over a pair of atoms within a mere seven-millionths-of-a-second window of opportunity, physicists at the University of Wisconsin-Madison created an atomic circuit that may help quantum computing become a reality.

by Jill Sakai

UW-Madison physicists build basic quantum computing circuit

Madison, WI | Posted on February 27th, 2010

Quantum computing represents a new paradigm in information processing that may complement classical computers. Much of the dizzying rate of increase in traditional computing power has come as transistors shrink and pack more tightly onto chips — a trend that cannot continue indefinitely.

"At some point in time you get to the limit where a single transistor that makes up an electronic circuit is one atom, and then you can no longer predict how the transistor will work with classical methods," explains UW-Madison physics professor Mark Saffman. "You have to use the physics that describes atoms — quantum mechanics."

At that point, he says, "you open up completely new possibilities for processing information. There are certain calculational problems... that can be solved exponentially faster on a quantum computer than on any foreseeable classical computer."

With fellow physics professor Thad Walker, Saffman successfully used neutral atoms to create what is known as a controlled-NOT (CNOT) gate, a basic type of circuit that will be an essential element of any quantum computer. As described in the Jan. 8 issue of the journal Physical Review Letters, the work is the first demonstration of a quantum gate between two uncharged atoms.

The use of neutral atoms rather than charged ions or other materials distinguishes the achievement from previous work. "The current gold standard in experimental quantum computing has been set by trapped ions... People can run small programs now with up to eight ions in traps," says Saffman.

However, to be useful for computing applications, systems must contain enough quantum bits, or qubits, to be capable of running long programs and handling more complex calculations. An ion-based system presents challenges for scaling up because ions are highly interactive with each other and their environment, making them difficult to control.

"Neutral atoms have the advantage that in their ground state they don't talk to each other, so you can put more of them in a small region without having them interact with each other and cause problems," Saffman says. "This is a step forward toward creating larger systems."

The team used a combination of lasers, extreme cold (a fraction of a degree above absolute zero), and a powerful vacuum to immobilize two rubidium atoms within "optical traps." They used another laser to excite the atoms to a high-energy state to create the CNOT quantum gate between the two atoms, also achieving a property called entanglement in which the states of the two atoms are linked such that measuring one provides information about the other.

Writing in the same journal issue, another team also entangled neutral atoms but without the CNOT gate. Creating the gate is advantageous because it allows more control over the states of the atoms, Saffman says, as well as demonstrating a fundamental aspect of an eventual quantum computer.

The Wisconsin group is now working toward arrays of up to 50 atoms to test the feasibility of scaling up their methods. They are also looking for ways to link qubits stored in atoms with qubits stored in light with an eye toward future communication applications, such as "quantum internets."

This work was funded by grants from the National Science Foundation, the Army Research Office and the Intelligence Advanced Research Projects Agency.

####

For more information, please click here

Copyright © University of Wisconsin-Madison

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Scientific breakthrough in rechargeable batteries: Researchers from Singapore and Québec Team Up to Develop Next-Generation Materials to Power Electronic Devices and Electric Vehicles February 28th, 2015

First detailed microscopy evidence of bacteria at the lower size limit of life: Berkeley Lab research provides comprehensive description of ultra-small bacteria February 28th, 2015

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Physics

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Real-time observation of bond formation by using femtosecond X-ray liquidography February 26th, 2015

Govt.-Legislation/Regulation/Funding/Policy

First detailed microscopy evidence of bacteria at the lower size limit of life: Berkeley Lab research provides comprehensive description of ultra-small bacteria February 28th, 2015

Warming up the world of superconductors: Clusters of aluminum metal atoms become superconductive at surprisingly high temperatures February 25th, 2015

SUNY Poly CNSE Researchers and Corporate Partners to Present Forty Papers at Globally Recognized Lithography Conference: SUNY Poly CNSE Research Group Awarded Both ‘Best Research Paper’ and ‘Best Research Poster’ at SPIE Advanced Lithography 2015 forum February 25th, 2015

European roadmap for graphene science and technology published February 25th, 2015

Academic/Education

NanoTecNexus Launches New App for Learning About Nanotechnology—STEM Education Project Spearheaded by Interns February 26th, 2015

SUNY Poly CNSE Researchers and Corporate Partners to Present Forty Papers at Globally Recognized Lithography Conference: SUNY Poly CNSE Research Group Awarded Both ‘Best Research Paper’ and ‘Best Research Poster’ at SPIE Advanced Lithography 2015 forum February 25th, 2015

KIT Increases Commitment in Asia: DAAD Funds Two New Projects: Strategic Partnerships with Chinese Universities and Communi-cation Technologies Network February 22nd, 2015

Minus K Technology Announces Its 2015 Vibration Isolator Educational Giveaway to U.S. Colleges and Universities February 18th, 2015

Quantum Computing

Waterloo invention advances quantum computing research: New device, which will be used in labs around the world to develop quantum technologies, produces fragile entangled photons in a more efficient way February 16th, 2015

Quantum research past, present and future for discussion at AAAS February 16th, 2015

Exotic states materialize with supercomputers February 12th, 2015

Analogue quantum computers: Still wishful thinking? Many challenges lie ahead before quantum annealing, the analogue version of quantum computation, contributes to solve combinatorial optimisation problems February 12th, 2015

Announcements

Scientific breakthrough in rechargeable batteries: Researchers from Singapore and Québec Team Up to Develop Next-Generation Materials to Power Electronic Devices and Electric Vehicles February 28th, 2015

First detailed microscopy evidence of bacteria at the lower size limit of life: Berkeley Lab research provides comprehensive description of ultra-small bacteria February 28th, 2015

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Quantum nanoscience

Quantum many-body systems on the way back to equilibrium: Advances in experimental and theoretical physics enable a deeper understanding of the dynamics and properties of quantum many-body systems February 25th, 2015

Quantum research past, present and future for discussion at AAAS February 16th, 2015

Exotic states materialize with supercomputers February 12th, 2015

Graphene displays clear prospects for flexible electronics February 2nd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE