Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Water may not run uphill, but it practically flies off new surface

Abstract:
Engineering researchers have crafted a flat surface that refuses to get wet. Water droplets skitter across it like ball bearings tossed on ice.

The inspiration? Not wax. Not glass. Not even Teflon.

Water may not run uphill, but it practically flies off new surface

Gainesville, FL | Posted on February 26th, 2010

Instead, University of Florida engineers have achieved what they label in a new paper a "nearly perfect hydrophobic interface" by reproducing, on small bits of flat plastic, the shape and patterns of the minute hairs that grow on the bodies of spiders.

"They have short hairs and longer hairs, and they vary a lot. And that is what we mimic," said Wolfgang Sigmund, a professor of materials science and engineering.

A paper about the surface, which works equally well with hot or cold water, appears in this month's edition of the journal Langmuir.

Spiders use their water-repelling hairs to stay dry or avoid drowning, with water spiders capturing air bubbles and toting them underwater to breathe. Potential applications for UF's ultra-water-repellent surfaces are many, Sigmund said. When water scampers off the surface, it picks up and carries dirt with it, in effect making the surface self-cleaning. As such, it is ideal for some food packaging, or windows, or solar cells that must stay clean to gather sunlight, he said. Boat designers might coat hulls with it, making boats faster and more efficient.

Sigmund said he began working on the project about five years ago after picking up on the work of a colleague. Sigmund was experimenting with microscopic fibers when he turned to spiders, noted by biologists for at least a century for their water-repelling hairs.

As a scientist and engineer, he said, his natural tendency was to make all his fibers the same size and distance apart. But he learned that spider hairs are both long and short and variously curved and straight, forming a surface that is anything but uniform. He decided to try to mimic this random, chaotic surface using plastic hairs varying in size but averaging about 600 microns, or millionths of a meter.

The results came as a great surprise.

"Most people that publish in this field always go for these perfect structures, and we are the first to show that the bad ones are the better ones," Sigmund said. "Of course this is a finding in a lab. This is not something you expect from theory."

To be sure, water-repelling surfaces or treatments are already common, spanning shoe wax to caulk to car windshield treatments. Scientists have also reproduced other biologically inspired water repelling surfaces, including ones patterned after lotus leaves.

But Sigmund said the UF surface may be the most or among the most water phobic. Close-up photographs of water droplets on dime-sized plastic squares show that the droplets maintain their spherical shape, whether standing still or moving. Droplets bulge down on most other surfaces, dragging a kind of tail as they move. Sigmund said his surface is the first to shuttle droplets with no tail.

Also, unlike many water-repelling surfaces, the UF one relies entirely on the microscopic shape and patterns of the material — rather than its composition.

In other words, physics, not chemistry, is what makes it water repellent. Theoretically, that means the technique could transform even the most water-sopping materials - say, sponges - into water-shedding ones. It also means that Sigmund's surfaces need never slough off dangerous chemicals. Provided the surface material itself is made safe, making it water repellent introduces no new risks.

Although he hasn't published the research yet, Sigmund said a variation of the surface also repels oil, a first for the industry.

Sigmund said making the water or oil-repelling surfaces involves applying a hole-filled membrane to a polymer, heating the two, and then peeling off the membrane. Made gooey by the heat, the polymer comes out of the holes in the desired thin, randomly sized fibers.

While inexpensive, it is hard to produce successful surfaces with great reliability, and different techniques need to be developed to make the surfaces in commercially available quantities and size, Sigmund said. Also, he said, more research is needed to make the surfaces hardy and resistant to damage.

UF patents have already drawn a great deal of industry attention, he said. "We are at the very beginning but there is a lot of interest from industry, because our surface is the first one that relies only on surface features and can repel hot water, cold water, and if we change the chemistry, both oil and water."

Doctoral student Shu-Hau Hsu and undergraduate Eli Rubin contributed to the research, funded in part by a scholarship from Ohio-based OMNOVA Solutions Foundation.

####

About University of Florida
The University of Florida (UF) is a major, public, comprehensive, land-grant, research university. The state's oldest, largest and most comprehensive university, UF is among the nation's most academically diverse public universities. UF has a long history of established programs in international education, research and service. It is one of only 17 public, land-grant universities that belongs to the Association of American Universities.

For more information, please click here

Contacts:
Writer
Aaron Hoover

352-392-0186

Source
Wolfgang Sigmund

352-246-3396

Copyright © University of Florida

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Arrowhead Pharmaceuticals to Webcast Fiscal 2017 Third Quarter Results July 27th, 2017

Strange electrons break the crystal symmetry of high-temperature superconductors: Brookhaven Lab scientists discover spontaneous voltage perpendicular to applied current that may help unravel the mystery of high-temperature superconductors July 27th, 2017

Getting closer to porous, light-responsive materials: A new flexible material changes its porous nature when exposed to light July 27th, 2017

First Capacitive Transducer with 13nm Gap July 27th, 2017

Marine/Watercraft

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

Transparent gel-based robots can catch and release live fish: Made from hydrogel, robots may one day assist in surgical operations, evade underwater detection February 2nd, 2017

NIST-made 'sun and rain' used to study nanoparticle release from polymers October 5th, 2016

New material to revolutionize water proofing September 12th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Ultracold molecules hold promise for quantum computing: New approach yields long-lasting configurations that could provide long-sought “qubit” material July 27th, 2017

Strange electrons break the crystal symmetry of high-temperature superconductors: Brookhaven Lab scientists discover spontaneous voltage perpendicular to applied current that may help unravel the mystery of high-temperature superconductors July 27th, 2017

Graduate Students from Across the Country Attend Hands-on NanoCamp: Prominent scientists Warren Oliver, Ph.D., and George Pharr, Ph.D., presented a weeklong NanoCamp for hand-picked graduate students across the United States July 26th, 2017

Ultrathin device harvests electricity from human motion July 23rd, 2017

Possible Futures

Atomic discovery opens door to greener, faster, smaller electronic circuitry: Scientists find way to correct communication pathways in silicon chips, making them perfect July 27th, 2017

Physicists gain new insights into nanosystems with spherical confinement: Enormous potential for the targeted delivery of pharmaceutical agents and the creation of tailored nanoparticles July 27th, 2017

Strange electrons break the crystal symmetry of high-temperature superconductors: Brookhaven Lab scientists discover spontaneous voltage perpendicular to applied current that may help unravel the mystery of high-temperature superconductors July 27th, 2017

Getting closer to porous, light-responsive materials: A new flexible material changes its porous nature when exposed to light July 27th, 2017

Academic/Education

Graduate Students from Across the Country Attend Hands-on NanoCamp: Prominent scientists Warren Oliver, Ph.D., and George Pharr, Ph.D., presented a weeklong NanoCamp for hand-picked graduate students across the United States July 26th, 2017

The Physics Department of Imperial College, London, uses the Quorum Q150T to deposit metals and ITO to make plasmonic sensors and electric contact pads July 13th, 2017

Oxford Instruments congratulates Lancaster University for inaugurating the IsoLab, built for studying quantum systems June 20th, 2017

The 2017 Winners for Generation Nano June 8th, 2017

Announcements

Rice U. scientists map ways forward for lithium-ion batteries for extreme environments: Paper details developments toward high-temperature batteries July 27th, 2017

Ultracold molecules hold promise for quantum computing: New approach yields long-lasting configurations that could provide long-sought “qubit” material July 27th, 2017

Atomic discovery opens door to greener, faster, smaller electronic circuitry: Scientists find way to correct communication pathways in silicon chips, making them perfect July 27th, 2017

Physicists gain new insights into nanosystems with spherical confinement: Enormous potential for the targeted delivery of pharmaceutical agents and the creation of tailored nanoparticles July 27th, 2017

Patents/IP/Tech Transfer/Licensing

Argonne National Laboratory’s Continuous ALD Technology Licensed Exclusively to Forge Nano July 7th, 2017

Aculon Expands NanoProof® Product Line for Electronics Waterproofing Technology: With growing market opportunities Aculon Launches NanoProof® 8 with Push Through Connectivity™ and NanoProof® DAB a syringe application May 30th, 2017

NREL’s Advanced Atomic Layer Deposition Enables Lithium-Ion Battery Technology: May 10th, 2017

Forge Nano 2017: 1st Quarter Media Update April 20th, 2017

Food/Agriculture/Supplements

Probiotics: Novel biosynthetic tool to develop metallic nanoparticles: This research article by Dr. Nida Akhtar et al has been published in Recent Patents on Drug Delivery & Formulation, Volume 11, Issue 1, 2017 July 20th, 2017

New technology could offer cheaper, faster food testing: Specialized droplets interact with bacteria and can be analyzed using a smartphone April 7th, 2017

Meta-lenses bring benchtop performance to small, hand-held spectrometer: Game-changing nanostructure-based lenses allow smaller devices, increased functionality February 9th, 2017

PCATDES Starts Field Testing of Photocatalytic Reactors in South East Asia December 28th, 2016

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Here's a tip: Indented cement shows unique properties: Rice University models reveal nanoindentation can benefit crystals in concrete July 20th, 2017

National Space Society Governor Scott Pace Named to National Space Council as Executive Secretary July 18th, 2017

Researchers revolutionize vital conservation tool with use of gold nanotechnology and lasers: Cryopreservation study results have sweeping implications for wildlife conservation and human health July 15th, 2017

Nature-inspired material uses liquid reinforcement: Rice U. nanoengineers create liquid-solid composites using clues from nature July 11th, 2017

Solar/Photovoltaic

'Upconverted' light has a bright future: Rice University professor developing plasmon-powered devices for medicine, security, solar cells July 17th, 2017

Making two out of one: FAU researchers have explained the mechanism behind a process that can increase the efficiency of organic solar cells July 12th, 2017

Thinking thin brings new layering and thermal abilities to the semiconductor industry: In a breakthrough for the semiconductor industry, researchers demonstrate a new layer transfer technique called "controlled spalling" that creates many thin layers from a single gallium nitride July 11th, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Construction

Here's a tip: Indented cement shows unique properties: Rice University models reveal nanoindentation can benefit crystals in concrete July 20th, 2017

Russian scientists create new system of concrete building structures: Sientists of Peter the Great Saint-Petersburg Polytechnic University developed a new construction technology April 24th, 2017

Next-gen steel under the microscope March 18th, 2017

Graphene foam gets big and tough: Rice University's nanotube-reinforced material can be shaped, is highly conductive February 13th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project