Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nanoscience opens new doors for studying cell biology, Baird says at AAAS

Barbara Baird. Robert Barker/University Photography
Barbara Baird. Robert Barker/University Photography

Abstract:
From a runny nose and watery eyes triggered by pollen in the air to a life threatening shock set off by a bee sting, allergic reactions are often whole-body responses initiated by individual cells responding to their immediate environment on the molecular level.

Nanoscience opens new doors for studying cell biology, Baird says at AAAS

Ithaca, NY | Posted on February 23rd, 2010

Cell biologists have made recent progress in identifying the many molecules that combine to mediate a wide variety of cellular responses, but much less is known about how the receptors for the environmental stimuli on a cell's surface orchestrate the spatial assembly of the intracellular signaling pathways.

But that's changing with the advent of new materials engineered at the micro- and nanoscale, said Barbara Baird, professor of chemistry and chemical biology, at the annual meeting of the American Academy for the Advancement of Science (AAAS) in San Diego Feb. 21. And better understanding those intracellular structural rearrangements could have a wide variety of applications, from new ways of diagnosing and treating disease to better materials for medical implants, Baird said.

With collaborators in engineering and materials sciences and at the Cornell Nanobiotechnology Center, researchers in Baird's laboratory use wafers that are etched and/or chemically modified with micron-sized features (micropatterned arrays) to study how receptors bind to specifically engineered stimulus proteins, or ligands.

Baird's work focuses on mast cells, which play a central role in the allergic immune response. Using fluorescence microscopy, she can observe the process in which immunoglobulin E (IgE), tightly associated with receptors on the cell membrane, binds with ligands to trigger a cellular response with a spatially controlled mechanism. (Mast cells are about 10 microns in diameter; receptors are about 10 nanometers. A micron is one-millionth of a meter; a nanometer is one-billionth of a meter.)

"Now we can control the environment that the cell sees on the [same] length scale that it's seeing in its native environment," Baird said in an earlier interview.

The researchers are also using surfaces coated with polymers of different thicknesses, compositions and dimensions (relative to the diameter of the cell) to study how cells interact with various surfaces. That work could lead to materials engineered to elicit or inhibit certain cellular responses.

"You use [nanotechnology] to probe the system, and then you can take advantage of that knowledge to manipulate the system," Baird said. Understanding what makes cells adhere or not adhere to a surface could be key in developing materials for medical implants, for example; the same materials can be adapted to bind specific receptor proteins in biosensors to detect the presence of certain antibodies in the blood.

Interdisciplinary collaboration is crucial in nanobiotechnology, Baird noted. "You have to have this very close interaction between the engineers and the biologists in making the right tools that ask the right questions," she said.

####

About Cornell University
Once called "the first American university" by educational historian Frederick Rudolph, Cornell University represents a distinctive mix of eminent scholarship and democratic ideals. Adding practical subjects to the classics and admitting qualified students regardless of nationality, race, social circumstance, gender, or religion was quite a departure when Cornell was founded in 1865.

Today's Cornell reflects this heritage of egalitarian excellence. It is home to the nation's first colleges devoted to hotel administration, industrial and labor relations, and veterinary medicine. Both a private university and the land-grant institution of New York State, Cornell University is the most educationally diverse member of the Ivy League.

On the Ithaca campus alone nearly 20,000 students representing every state and 120 countries choose from among 4,000 courses in 11 undergraduate, graduate, and professional schools. Many undergraduates participate in a wide range of interdisciplinary programs, play meaningful roles in original research, and study in Cornell programs in Washington, New York City, and the world over.

For more information, please click here

Contacts:
Media Contact:
Claudia Wheatley
(607) 255-9451

Cornell Chronicle:
Lauren Gold
(607) 255-9736

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Squeezed quantum cats May 28th, 2015

New chip makes testing for antibiotic-resistant bacteria faster, easier: Researchers at the University of Toronto design diagnostic chip to reduce testing time from days to one hour, allowing doctors to pick the right antibiotic the first time May 28th, 2015

Collaboration could lead to biodegradable computer chips May 28th, 2015

Arrowhead to Present at Jefferies 2015 Healthcare Conference May 27th, 2015

Possible Futures

Global Nano-Enabled Packaging Market For Food and Beverages Will Reach $15.0 billion in 2020 May 26th, 2015

Simulations predict flat liquid May 21st, 2015

Nature inspires first artificial molecular pump: Simple design mimics pumping mechanism of life-sustaining proteins found in living cells May 19th, 2015

NNCO and Museum of Science Fiction to Collaborate on Nanotechnology and 3D Printing Panels at Awesome Con May 19th, 2015

Academic/Education

SUNY Poly CNSE and NIOSH Launch Federal Nano Health and Safety Consortium: May 20th, 2015

New JEOL E-Beam Lithography System to Enhance Quantum NanoFab Capabilities May 6th, 2015

FEI Partners With the George Washington University to Equip New Science & Engineering Hall: Suite of new high-performance microscopes will be used for cutting-edge experiments at GW’s new research facility April 29th, 2015

Renishaw Raman systems used to study 2D materials at Boston University, Massachusetts, USA. April 28th, 2015

Nanomedicine

New chip makes testing for antibiotic-resistant bacteria faster, easier: Researchers at the University of Toronto design diagnostic chip to reduce testing time from days to one hour, allowing doctors to pick the right antibiotic the first time May 28th, 2015

Arrowhead to Present at Jefferies 2015 Healthcare Conference May 27th, 2015

Seeing the action: UCSB researchers develop a novel device to image the minute forces and actions involved in cell membrane hemifusion May 27th, 2015

Nanotechnology identifies brain tumor types through MRI 'virtual biopsy' in animal studies: If results are confirmed in humans, tumor cells could someday be diagnosed by MRI imaging and treated with tumor-specific IV injections; new NIH grant will fund future study May 27th, 2015

Announcements

Squeezed quantum cats May 28th, 2015

New chip makes testing for antibiotic-resistant bacteria faster, easier: Researchers at the University of Toronto design diagnostic chip to reduce testing time from days to one hour, allowing doctors to pick the right antibiotic the first time May 28th, 2015

Collaboration could lead to biodegradable computer chips May 28th, 2015

Controlled Release of Anticorrosive Materials in Spot by Nanocarriers May 27th, 2015

Events/Classes

Technology for Tomorrow’s Market Opportunities and Challenges: LetiDays Grenoble Presents the Possibilities: June 24-25 Event Includes Focus on IoT-Augmented Mobility and Leti’s Latest Results on Silicon Technologies, Sensors, Health Applications and Smart Cities May 27th, 2015

Arrowhead to Present at Jefferies 2015 Healthcare Conference May 27th, 2015

Haydale Named Lead Sponsor for Cambridge Graphene Festival May 22nd, 2015

Aspen Aerogels to Present at the Cowen and Company Technology, Media & Telecom Conference May 21st, 2015

Nanobiotechnology

Seeing the action: UCSB researchers develop a novel device to image the minute forces and actions involved in cell membrane hemifusion May 27th, 2015

Nanotechnology identifies brain tumor types through MRI 'virtual biopsy' in animal studies: If results are confirmed in humans, tumor cells could someday be diagnosed by MRI imaging and treated with tumor-specific IV injections; new NIH grant will fund future study May 27th, 2015

Who needs water to assemble DNA? Non-aqueous solvent supports DNA nanotechnology May 27th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project