Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nanoscience opens new doors for studying cell biology, Baird says at AAAS

Barbara Baird. Robert Barker/University Photography
Barbara Baird. Robert Barker/University Photography

Abstract:
From a runny nose and watery eyes triggered by pollen in the air to a life threatening shock set off by a bee sting, allergic reactions are often whole-body responses initiated by individual cells responding to their immediate environment on the molecular level.

Nanoscience opens new doors for studying cell biology, Baird says at AAAS

Ithaca, NY | Posted on February 23rd, 2010

Cell biologists have made recent progress in identifying the many molecules that combine to mediate a wide variety of cellular responses, but much less is known about how the receptors for the environmental stimuli on a cell's surface orchestrate the spatial assembly of the intracellular signaling pathways.

But that's changing with the advent of new materials engineered at the micro- and nanoscale, said Barbara Baird, professor of chemistry and chemical biology, at the annual meeting of the American Academy for the Advancement of Science (AAAS) in San Diego Feb. 21. And better understanding those intracellular structural rearrangements could have a wide variety of applications, from new ways of diagnosing and treating disease to better materials for medical implants, Baird said.

With collaborators in engineering and materials sciences and at the Cornell Nanobiotechnology Center, researchers in Baird's laboratory use wafers that are etched and/or chemically modified with micron-sized features (micropatterned arrays) to study how receptors bind to specifically engineered stimulus proteins, or ligands.

Baird's work focuses on mast cells, which play a central role in the allergic immune response. Using fluorescence microscopy, she can observe the process in which immunoglobulin E (IgE), tightly associated with receptors on the cell membrane, binds with ligands to trigger a cellular response with a spatially controlled mechanism. (Mast cells are about 10 microns in diameter; receptors are about 10 nanometers. A micron is one-millionth of a meter; a nanometer is one-billionth of a meter.)

"Now we can control the environment that the cell sees on the [same] length scale that it's seeing in its native environment," Baird said in an earlier interview.

The researchers are also using surfaces coated with polymers of different thicknesses, compositions and dimensions (relative to the diameter of the cell) to study how cells interact with various surfaces. That work could lead to materials engineered to elicit or inhibit certain cellular responses.

"You use [nanotechnology] to probe the system, and then you can take advantage of that knowledge to manipulate the system," Baird said. Understanding what makes cells adhere or not adhere to a surface could be key in developing materials for medical implants, for example; the same materials can be adapted to bind specific receptor proteins in biosensors to detect the presence of certain antibodies in the blood.

Interdisciplinary collaboration is crucial in nanobiotechnology, Baird noted. "You have to have this very close interaction between the engineers and the biologists in making the right tools that ask the right questions," she said.

####

About Cornell University
Once called "the first American university" by educational historian Frederick Rudolph, Cornell University represents a distinctive mix of eminent scholarship and democratic ideals. Adding practical subjects to the classics and admitting qualified students regardless of nationality, race, social circumstance, gender, or religion was quite a departure when Cornell was founded in 1865.

Today's Cornell reflects this heritage of egalitarian excellence. It is home to the nation's first colleges devoted to hotel administration, industrial and labor relations, and veterinary medicine. Both a private university and the land-grant institution of New York State, Cornell University is the most educationally diverse member of the Ivy League.

On the Ithaca campus alone nearly 20,000 students representing every state and 120 countries choose from among 4,000 courses in 11 undergraduate, graduate, and professional schools. Many undergraduates participate in a wide range of interdisciplinary programs, play meaningful roles in original research, and study in Cornell programs in Washington, New York City, and the world over.

For more information, please click here

Contacts:
Media Contact:
Claudia Wheatley
(607) 255-9451

Cornell Chronicle:
Lauren Gold
(607) 255-9736

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Attosecond physics: A switch for light-wave electronics May 24th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Nanoscale Trojan horses treat inflammation May 24th, 2016

Possible Futures

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Attosecond physics: A switch for light-wave electronics May 24th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Nanoscale Trojan horses treat inflammation May 24th, 2016

Academic/Education

Graphene: Progress, not quantum leaps May 23rd, 2016

Smithsonian Science Education Center and National Space Society Team Up for Next-Generation Space Education Program "Enterprise In Space" May 11th, 2016

The University of Colorado Boulder, USA, combines Raman spectroscopy and nanoindentation for improved materials characterisation May 9th, 2016

Albertan Science Lab Opens in India May 7th, 2016

Nanomedicine

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Nanoscale Trojan horses treat inflammation May 24th, 2016

Programmable materials find strength in molecular repetition May 23rd, 2016

Tiny packages may pack powerful treatment for brain tumors: Nanocarrier provides efficient delivery of chemotherapeutic drug May 23rd, 2016

Announcements

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Attosecond physics: A switch for light-wave electronics May 24th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Nanoscale Trojan horses treat inflammation May 24th, 2016

Events/Classes

Novel gene therapy shows potential for lung repair in asthma May 18th, 2016

Arrowhead Pharmaceuticals' Preclinical Candidate ARC-LPA Achieves 98% Knockdown and Long Duration of Effect after Subcutaneous Administration May 10th, 2016

Nanometrics Announces Upcoming Investor Events May 10th, 2016

Oxford Instruments Asylum Research and McGill University Announce the McGill AFM Summer School and Workshop, May 12-13, 2016 May 4th, 2016

Nanobiotechnology

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Nanoscale Trojan horses treat inflammation May 24th, 2016

Programmable materials find strength in molecular repetition May 23rd, 2016

Tiny packages may pack powerful treatment for brain tumors: Nanocarrier provides efficient delivery of chemotherapeutic drug May 23rd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic