Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Defining the Design Rules for Targeted Nanoparticles Used To Image Tumors

Abstract:
One of the challenges of using nanoparticles for imaging tumors during surgery is that there needs to be a tradeoff between the number of nanoparticles that target a tumor and the rapid clearance of any unbound nanoparticles from the body. A large number of nanoparticles sticking tightly to a tumor will provide a bright signal that can help a surgeon spot the edges of the malignant tissue, but only if the background signal from unbound nanoparticles - the ones circulating freely through the body - is not too high.

Defining the Design Rules for Targeted Nanoparticles Used To Image Tumors

Bethesda, MD | Posted on February 19th, 2010

Now, a team of investigators has developed a set of design rules that can optimize that tradeoff, producing nanoparticles that have the best chance of binding to a tumor but that will clear rapidly through the kidneys when they do not find their target. The team, led by John Frangioni, from the Beth Israel Deaconess Medical Center, and Moungi Bawendi, of the Massachusetts Institute of Technology and a member of the MIT-Harvard Center of Cancer Nanotechnology Excellence, published the results of their work in the journal Nature Nanotechnology.

In earlier work, the investigators had found that the kidneys efficiently filter out of the blood stream nanoparticles of approximately 5.5 nanometers (nm) in diameter and that are zwitterionic, that is they have both positive and negative charges on their surface. The researchers also developed ultrasmall, zwitterionic, brightly fluorescent nanoparticles consisting of a zinc-cadmium sulfide core surrounded by a cadmium selenide shell and a cysteine coating.

In this study, the investigators linked one of two tumor targeting agents to the cysteine coating and tested the ability of the two formulations to target tumors and yet be cleared from circulation. While the usual approach to developing targeted nanoparticles has been to add as large a number of targeting molecules as possible in order to increase the probability of sticking to the targeted tissue, the investigators found that they could only add between five and ten targeting molecules without increasing the overall size of the nanoparticle above the 5.5 nm cutoff. Of equal importance, they also found that nanoparticles prepared in this manner did not bind to blood stream proteins, which would have had the effect of increasing the overall size of the nanoparticles.

Tests in animals using cultured cells showed that using even relatively low numbers of targeting molecules produced nanoparticles capable of binding tightly to targeted tumor cells. Biodistribution studies showed that the nanoparticles accumulated in targeted tumors, where they could be imaged, but not in the liver, spleen, and lungs, tissues that often accumulate circulating nanoparticles. Unbound nanoparticles were excreted through the kidneys, as predicted, within 4 hours. Four-hour clearance is important because it means that in practice, a patient scheduled for tumor-removing surgery could receive a dose of the nanoparticles when first arriving at the hospital and that background levels of unbound nanoparticles would be close to zero by the time the surgeon needed to image labeled tumors.

This work, which is detailed in a paper titled "Design considerations for tumour-targeted nanoparticles," was supported in part by the NCI Alliance for Nanotechnology in Cancer, a comprehensive initiative designed to accelerate the application of nanotechnology to the prevention, diagnosis, and treatment of cancer. An abstract of this paper is available at the journal's website.

####

About NCI Alliance for Nanotechnology in Cancer
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Copyright © NCI Alliance for Nanotechnology in Cancer

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

Tokyo Institute of Technology research: Antiaromatic molecule displays record electrical conductance July 19th, 2017

Harnessing light to drive chemical reactions July 19th, 2017

Nanoparticles could spur better LEDs, invisibility cloaks July 19th, 2017

Possible Futures

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

Here's a tip: Indented cement shows unique properties: Rice University models reveal nanoindentation can benefit crystals in concrete July 20th, 2017

Tokyo Institute of Technology research: Antiaromatic molecule displays record electrical conductance July 19th, 2017

Harnessing light to drive chemical reactions July 19th, 2017

Academic/Education

The Physics Department of Imperial College, London, uses the Quorum Q150T to deposit metals and ITO to make plasmonic sensors and electric contact pads July 13th, 2017

Oxford Instruments congratulates Lancaster University for inaugurating the IsoLab, built for studying quantum systems June 20th, 2017

The 2017 Winners for Generation Nano June 8th, 2017

MIT Energy Initiative awards 10 seed fund grants for early-stage energy research May 4th, 2017

Nanomedicine

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

'Upconverted' light has a bright future: Rice University professor developing plasmon-powered devices for medicine, security, solar cells July 17th, 2017

Researchers revolutionize vital conservation tool with use of gold nanotechnology and lasers: Cryopreservation study results have sweeping implications for wildlife conservation and human health July 15th, 2017

Nanomedicine opens door to precision medicine for brain tumors July 12th, 2017

Announcements

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

Here's a tip: Indented cement shows unique properties: Rice University models reveal nanoindentation can benefit crystals in concrete July 20th, 2017

Tokyo Institute of Technology research: Antiaromatic molecule displays record electrical conductance July 19th, 2017

Harnessing light to drive chemical reactions July 19th, 2017

Nanobiotechnology

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

Researchers revolutionize vital conservation tool with use of gold nanotechnology and lasers: Cryopreservation study results have sweeping implications for wildlife conservation and human health July 15th, 2017

Nanomedicine opens door to precision medicine for brain tumors July 12th, 2017

Nature-inspired material uses liquid reinforcement: Rice U. nanoengineers create liquid-solid composites using clues from nature July 11th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project