Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Defining the Design Rules for Targeted Nanoparticles Used To Image Tumors

Abstract:
One of the challenges of using nanoparticles for imaging tumors during surgery is that there needs to be a tradeoff between the number of nanoparticles that target a tumor and the rapid clearance of any unbound nanoparticles from the body. A large number of nanoparticles sticking tightly to a tumor will provide a bright signal that can help a surgeon spot the edges of the malignant tissue, but only if the background signal from unbound nanoparticles - the ones circulating freely through the body - is not too high.

Defining the Design Rules for Targeted Nanoparticles Used To Image Tumors

Bethesda, MD | Posted on February 19th, 2010

Now, a team of investigators has developed a set of design rules that can optimize that tradeoff, producing nanoparticles that have the best chance of binding to a tumor but that will clear rapidly through the kidneys when they do not find their target. The team, led by John Frangioni, from the Beth Israel Deaconess Medical Center, and Moungi Bawendi, of the Massachusetts Institute of Technology and a member of the MIT-Harvard Center of Cancer Nanotechnology Excellence, published the results of their work in the journal Nature Nanotechnology.

In earlier work, the investigators had found that the kidneys efficiently filter out of the blood stream nanoparticles of approximately 5.5 nanometers (nm) in diameter and that are zwitterionic, that is they have both positive and negative charges on their surface. The researchers also developed ultrasmall, zwitterionic, brightly fluorescent nanoparticles consisting of a zinc-cadmium sulfide core surrounded by a cadmium selenide shell and a cysteine coating.

In this study, the investigators linked one of two tumor targeting agents to the cysteine coating and tested the ability of the two formulations to target tumors and yet be cleared from circulation. While the usual approach to developing targeted nanoparticles has been to add as large a number of targeting molecules as possible in order to increase the probability of sticking to the targeted tissue, the investigators found that they could only add between five and ten targeting molecules without increasing the overall size of the nanoparticle above the 5.5 nm cutoff. Of equal importance, they also found that nanoparticles prepared in this manner did not bind to blood stream proteins, which would have had the effect of increasing the overall size of the nanoparticles.

Tests in animals using cultured cells showed that using even relatively low numbers of targeting molecules produced nanoparticles capable of binding tightly to targeted tumor cells. Biodistribution studies showed that the nanoparticles accumulated in targeted tumors, where they could be imaged, but not in the liver, spleen, and lungs, tissues that often accumulate circulating nanoparticles. Unbound nanoparticles were excreted through the kidneys, as predicted, within 4 hours. Four-hour clearance is important because it means that in practice, a patient scheduled for tumor-removing surgery could receive a dose of the nanoparticles when first arriving at the hospital and that background levels of unbound nanoparticles would be close to zero by the time the surgeon needed to image labeled tumors.

This work, which is detailed in a paper titled "Design considerations for tumour-targeted nanoparticles," was supported in part by the NCI Alliance for Nanotechnology in Cancer, a comprehensive initiative designed to accelerate the application of nanotechnology to the prevention, diagnosis, and treatment of cancer. An abstract of this paper is available at the journal's website.

####

About NCI Alliance for Nanotechnology in Cancer
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Copyright © NCI Alliance for Nanotechnology in Cancer

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

UC research partnership explores how to best harness solar power March 2nd, 2015

Researchers turn unzipped nanotubes into possible alternative for platinum: Aerogel catalyst shows promise for fuel cells March 2nd, 2015

Important step towards quantum computing: Metals at atomic scale March 2nd, 2015

New Hopes for Treatment of Intestine Cancer by Edible Nanodrug March 2nd, 2015

Possible Futures

European roadmap for graphene science and technology published February 25th, 2015

Quantum research past, present and future for discussion at AAAS February 16th, 2015

World’s first compact rotary 3D printer-cum-scanner unveiled at AAAS by NTU Singapore start-up: With production funded by crowdsourcing, the first unit will be delivered to the United States in March February 16th, 2015

Nanotechnology Electric Vehicle (EV) Market Analysis Report 2015: According to Radiant Insights, Inc February 13th, 2015

Academic/Education

NanoTecNexus Launches New App for Learning About Nanotechnology—STEM Education Project Spearheaded by Interns February 26th, 2015

SUNY Poly CNSE Researchers and Corporate Partners to Present Forty Papers at Globally Recognized Lithography Conference: SUNY Poly CNSE Research Group Awarded Both ‘Best Research Paper’ and ‘Best Research Poster’ at SPIE Advanced Lithography 2015 forum February 25th, 2015

KIT Increases Commitment in Asia: DAAD Funds Two New Projects: Strategic Partnerships with Chinese Universities and Communi-cation Technologies Network February 22nd, 2015

Minus K Technology Announces Its 2015 Vibration Isolator Educational Giveaway to U.S. Colleges and Universities February 18th, 2015

Nanomedicine

New Hopes for Treatment of Intestine Cancer by Edible Nanodrug March 2nd, 2015

Graphene Shows Promise In Eradication Of Stem Cancer Cells March 1st, 2015

Novel Method to Determine Optical Purity of Drug Components March 1st, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Announcements

UC research partnership explores how to best harness solar power March 2nd, 2015

Researchers turn unzipped nanotubes into possible alternative for platinum: Aerogel catalyst shows promise for fuel cells March 2nd, 2015

Important step towards quantum computing: Metals at atomic scale March 2nd, 2015

New Hopes for Treatment of Intestine Cancer by Edible Nanodrug March 2nd, 2015

Nanobiotechnology

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Bacteria network for food: Bacteria connect to each other and exchange nutrients February 23rd, 2015

Building tailor-made DNA nanotubes step by step: New, block-by-block assembly method could pave way for applications in opto-electronics, drug delivery February 23rd, 2015

Better batteries inspired by lowly snail shells: Biological molecules can latch onto nanoscale components and lock them into position to make high performing Li-ion battery electrodes, according to new research presented at the 59th annual meeting of the Biophysical Society February 12th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE