Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > ASU researchers going new places with nanotechnology

TINY TECHNOLOGY: Postgraduate student Ashley Kibel displays some the nanochips used in her nanotechnology research, focused on biomimicry. The scale of a nano is roughly 40,000 times smaller than the width of a human hair. (Photo by Michael Arellano)
TINY TECHNOLOGY: Postgraduate student Ashley Kibel displays some the nanochips used in her nanotechnology research, focused on biomimicry. The scale of a nano is roughly 40,000 times smaller than the width of a human hair. (Photo by Michael Arellano)

Abstract:
ASU scientists using nanotechnology are proving that bigger isn't always better.

ASU researchers going new places with nanotechnology

Tempe, AZ | Posted on February 17th, 2010

Nanotechnology, research and technology development at the atomic or molecular level, is a field ASU has delved into to advance understanding in bioscience.

ASU scientists are developing a DNA sequencer they say could one day redefine the world of medicine.

Stuart Lindsay is leading the team of researchers in creating a new device that could map human DNA at a record pace. Lindsay is a professor and the director of the Biodesign Institute's Center for Single Molecule Biophysics.

"In principle, our main goal is fast DNA sequencing that is going to personalize medicine" Stuart said.

Essentially, the sequencer would work like a miniscule barcode reader, but instead of reading labels, it would read genetic code, giving an accurate readout of an individual's medicinal needs based on his or her DNA.

Scientists hope it will become a useful tool for diagnosis and treatment for future patients.

Similar projects that aim to map or read parts of the human genome using technologies outside of nanoscience can take years and cost substantially more, Biodesign Institute spokesman Joseph Caspermeyer said.

"Sequencing technology is based in a multi-billion dollar industry," Caspermeyer said "The Human Genome Project took about a dozen years and cost billions of dollars."

The Human Genome Project, an international scientific effort to map and identify DNA, took 13 years from its start in 1990 to produce completed data.

The capabilities of nanotechnology change all that, Caspermeyer said.

"In the future, our project aims to make it possible for a DNA sequencing to be as typical as an ordinary blood test," he said.

Caspermeyer described nanotechnology as taking existing technology and shrinking it.

ASU's nanotechnology research is funded by a combination of investments and grants.

"There is a competitive process for getting funding from federal agencies," he said.

About one in 10 institutions that apply for nanotechnology funding actually receive grants, Caspermeyer said.

"So there is a 90 percent chance that as a nanotechnology researcher, you are going to get turned down," he said.

ASU is one of the few colleges in the nation that does extensive nanotechnology research, he said.

With any new science comes new risk, Caspermeyer said, and critics argue that nanotechnology could create problems for people that scientists cannot accurately predict.

"You're creating particles and chemicals that probably have not existed before," Caspermeyer said, "On top of that, there are environmental concerns."

In response to these concerns, Caspermeyer said ASU has a section of research dedicated to analyzing risk.

"We have a group here studying social ramifications of nanotechnology," he said. "There is a combination of too much hype at this point.

"Those that see it as a panacea — solving all problems of society — and then there are the naysayers that fear any new type of innovation because we don't know the harm of it."

Lindsay said the fears about nanotechnology aren't well founded.

"There is a fear of the unknown, which makes me angry because we are so irrational of the hazards in our every day life," Lindsay said.

Graduate student Ashley Kibel has worked with nanotechnology since she earned her bachelor's degree from ASU in physics in 2005.

Kibel worked closely on the DNA sequencer project with Lindsay.

"The excitement you get when you see a result that is interesting — the excitement you get when you've spent two years of work and nothing comes of it and finally there's something — makes it worth a million bucks," Kibel said.

It is impossible to know at this point when a DNA sequencer might be used in the medical field, she said.

"We have a lot of work to get done, but we have made great progress," Kibel said.

####

For more information, please click here

Contacts:
Kyle Patton

Copyright © Arizona State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanotech-enabled moisturizer speeds healing of diabetic skin wounds: Spherical nucleic acids silence gene that interferes with wound healing April 24th, 2015

Fast and accurate 3-D imaging technique to track optically trapped particles April 24th, 2015

Pseudoparticles travel through photoactive material: KIT scientists measure important process in the conversion of light energy -- publication in Nature Communications April 24th, 2015

Scientists Use Nanoscale Building Blocks and DNA 'Glue' to Shape 3D Superlattices: New approach to designing ordered composite materials for possible energy applications April 23rd, 2015

Possible Futures

Printing Silicon on Paper, with Lasers April 21st, 2015

A glass fiber that brings light to a standstill: By coupling photons to atoms, light in a glass fiber can be slowed down to the speed of an express train; for a short while it can even be brought to a complete stop April 9th, 2015

Nanotechnology in Medical Devices Market is expected to reach $8.5 Billion by 2019 March 25th, 2015

Nanotechnology Enabled Drug Delivery to Influence Future Diagnosis and Treatments of Diseases March 21st, 2015

Nanomedicine

Nanotech-enabled moisturizer speeds healing of diabetic skin wounds: Spherical nucleic acids silence gene that interferes with wound healing April 24th, 2015

Fast and accurate 3-D imaging technique to track optically trapped particles April 24th, 2015

A silver lining: UCSB researchers cradle silver nanoclusters inside synthetic DNA to create a programmed, tunable fluorescent array April 23rd, 2015

Scientists Use Nanoscale Building Blocks and DNA 'Glue' to Shape 3D Superlattices: New approach to designing ordered composite materials for possible energy applications April 23rd, 2015

Announcements

Nanotech-enabled moisturizer speeds healing of diabetic skin wounds: Spherical nucleic acids silence gene that interferes with wound healing April 24th, 2015

Fast and accurate 3-D imaging technique to track optically trapped particles April 24th, 2015

Pseudoparticles travel through photoactive material: KIT scientists measure important process in the conversion of light energy -- publication in Nature Communications April 24th, 2015

Surface matters: Huge reduction of heat conduction observed in flat silicon channels April 23rd, 2015

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Richards-Kortum elected to American Academy of Arts and Sciences: April 22nd, 2015

‘Oxford Instruments Young Nanoscientist India Award 2015’ to Prof. Arindam Ghosh April 20th, 2015

Iranian Female Professor Awarded UNESCO Medal in Nanoscience April 20th, 2015

Happily ever after: Scientists arrange protein-nanoparticle marriage: New biotech method could lead to development of HIV vaccine, targeted cancer treatment April 20th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project