Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > ASU researchers going new places with nanotechnology

TINY TECHNOLOGY: Postgraduate student Ashley Kibel displays some the nanochips used in her nanotechnology research, focused on biomimicry. The scale of a nano is roughly 40,000 times smaller than the width of a human hair. (Photo by Michael Arellano)
TINY TECHNOLOGY: Postgraduate student Ashley Kibel displays some the nanochips used in her nanotechnology research, focused on biomimicry. The scale of a nano is roughly 40,000 times smaller than the width of a human hair. (Photo by Michael Arellano)

Abstract:
ASU scientists using nanotechnology are proving that bigger isn't always better.

ASU researchers going new places with nanotechnology

Tempe, AZ | Posted on February 17th, 2010

Nanotechnology, research and technology development at the atomic or molecular level, is a field ASU has delved into to advance understanding in bioscience.

ASU scientists are developing a DNA sequencer they say could one day redefine the world of medicine.

Stuart Lindsay is leading the team of researchers in creating a new device that could map human DNA at a record pace. Lindsay is a professor and the director of the Biodesign Institute's Center for Single Molecule Biophysics.

"In principle, our main goal is fast DNA sequencing that is going to personalize medicine" Stuart said.

Essentially, the sequencer would work like a miniscule barcode reader, but instead of reading labels, it would read genetic code, giving an accurate readout of an individual's medicinal needs based on his or her DNA.

Scientists hope it will become a useful tool for diagnosis and treatment for future patients.

Similar projects that aim to map or read parts of the human genome using technologies outside of nanoscience can take years and cost substantially more, Biodesign Institute spokesman Joseph Caspermeyer said.

"Sequencing technology is based in a multi-billion dollar industry," Caspermeyer said "The Human Genome Project took about a dozen years and cost billions of dollars."

The Human Genome Project, an international scientific effort to map and identify DNA, took 13 years from its start in 1990 to produce completed data.

The capabilities of nanotechnology change all that, Caspermeyer said.

"In the future, our project aims to make it possible for a DNA sequencing to be as typical as an ordinary blood test," he said.

Caspermeyer described nanotechnology as taking existing technology and shrinking it.

ASU's nanotechnology research is funded by a combination of investments and grants.

"There is a competitive process for getting funding from federal agencies," he said.

About one in 10 institutions that apply for nanotechnology funding actually receive grants, Caspermeyer said.

"So there is a 90 percent chance that as a nanotechnology researcher, you are going to get turned down," he said.

ASU is one of the few colleges in the nation that does extensive nanotechnology research, he said.

With any new science comes new risk, Caspermeyer said, and critics argue that nanotechnology could create problems for people that scientists cannot accurately predict.

"You're creating particles and chemicals that probably have not existed before," Caspermeyer said, "On top of that, there are environmental concerns."

In response to these concerns, Caspermeyer said ASU has a section of research dedicated to analyzing risk.

"We have a group here studying social ramifications of nanotechnology," he said. "There is a combination of too much hype at this point.

"Those that see it as a panacea solving all problems of society and then there are the naysayers that fear any new type of innovation because we don't know the harm of it."

Lindsay said the fears about nanotechnology aren't well founded.

"There is a fear of the unknown, which makes me angry because we are so irrational of the hazards in our every day life," Lindsay said.

Graduate student Ashley Kibel has worked with nanotechnology since she earned her bachelor's degree from ASU in physics in 2005.

Kibel worked closely on the DNA sequencer project with Lindsay.

"The excitement you get when you see a result that is interesting the excitement you get when you've spent two years of work and nothing comes of it and finally there's something makes it worth a million bucks," Kibel said.

It is impossible to know at this point when a DNA sequencer might be used in the medical field, she said.

"We have a lot of work to get done, but we have made great progress," Kibel said.

####

For more information, please click here

Contacts:
Kyle Patton

Copyright © Arizona State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

MEMS chips get metatlenses: Combining metasurface lenses with MEMS technology could add high-speed scanning and enhance focusing capability of optical systems February 21st, 2018

Atomic structure of ultrasound material not what anyone expected February 21st, 2018

Oxford Instruments announces Dr Kate Ross as winner of the 2018 Lee Osheroff Richardson Science Prize for North and South America February 20th, 2018

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Possible Futures

MEMS chips get metatlenses: Combining metasurface lenses with MEMS technology could add high-speed scanning and enhance focusing capability of optical systems February 21st, 2018

Atomic structure of ultrasound material not what anyone expected February 21st, 2018

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

Nanomedicine

Arrowhead Receives Regulatory Clearance to Begin Phase 1/2 Study of ARO-HBV for Treatment of Hepatitis B February 15th, 2018

Arrowhead Pharmaceuticals Receives Orphan Drug Designation for ARO-AAT February 15th, 2018

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers February 15th, 2018

Understanding brain functions using upconversion nanoparticles: Researchers can now send light deep into the brain to study neural activities February 14th, 2018

Announcements

MEMS chips get metatlenses: Combining metasurface lenses with MEMS technology could add high-speed scanning and enhance focusing capability of optical systems February 21st, 2018

Atomic structure of ultrasound material not what anyone expected February 21st, 2018

Oxford Instruments announces Dr Kate Ross as winner of the 2018 Lee Osheroff Richardson Science Prize for North and South America February 20th, 2018

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Oxford Instruments announces Dr Kate Ross as winner of the 2018 Lee Osheroff Richardson Science Prize for North and South America February 20th, 2018

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Joseph N. Pelton named 2017 Lifeboat Foundation Guardian Award Winner February 1st, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project