Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > ASU researchers going new places with nanotechnology

TINY TECHNOLOGY: Postgraduate student Ashley Kibel displays some the nanochips used in her nanotechnology research, focused on biomimicry. The scale of a nano is roughly 40,000 times smaller than the width of a human hair. (Photo by Michael Arellano)
TINY TECHNOLOGY: Postgraduate student Ashley Kibel displays some the nanochips used in her nanotechnology research, focused on biomimicry. The scale of a nano is roughly 40,000 times smaller than the width of a human hair. (Photo by Michael Arellano)

Abstract:
ASU scientists using nanotechnology are proving that bigger isn't always better.

ASU researchers going new places with nanotechnology

Tempe, AZ | Posted on February 17th, 2010

Nanotechnology, research and technology development at the atomic or molecular level, is a field ASU has delved into to advance understanding in bioscience.

ASU scientists are developing a DNA sequencer they say could one day redefine the world of medicine.

Stuart Lindsay is leading the team of researchers in creating a new device that could map human DNA at a record pace. Lindsay is a professor and the director of the Biodesign Institute's Center for Single Molecule Biophysics.

"In principle, our main goal is fast DNA sequencing that is going to personalize medicine" Stuart said.

Essentially, the sequencer would work like a miniscule barcode reader, but instead of reading labels, it would read genetic code, giving an accurate readout of an individual's medicinal needs based on his or her DNA.

Scientists hope it will become a useful tool for diagnosis and treatment for future patients.

Similar projects that aim to map or read parts of the human genome using technologies outside of nanoscience can take years and cost substantially more, Biodesign Institute spokesman Joseph Caspermeyer said.

"Sequencing technology is based in a multi-billion dollar industry," Caspermeyer said "The Human Genome Project took about a dozen years and cost billions of dollars."

The Human Genome Project, an international scientific effort to map and identify DNA, took 13 years from its start in 1990 to produce completed data.

The capabilities of nanotechnology change all that, Caspermeyer said.

"In the future, our project aims to make it possible for a DNA sequencing to be as typical as an ordinary blood test," he said.

Caspermeyer described nanotechnology as taking existing technology and shrinking it.

ASU's nanotechnology research is funded by a combination of investments and grants.

"There is a competitive process for getting funding from federal agencies," he said.

About one in 10 institutions that apply for nanotechnology funding actually receive grants, Caspermeyer said.

"So there is a 90 percent chance that as a nanotechnology researcher, you are going to get turned down," he said.

ASU is one of the few colleges in the nation that does extensive nanotechnology research, he said.

With any new science comes new risk, Caspermeyer said, and critics argue that nanotechnology could create problems for people that scientists cannot accurately predict.

"You're creating particles and chemicals that probably have not existed before," Caspermeyer said, "On top of that, there are environmental concerns."

In response to these concerns, Caspermeyer said ASU has a section of research dedicated to analyzing risk.

"We have a group here studying social ramifications of nanotechnology," he said. "There is a combination of too much hype at this point.

"Those that see it as a panacea — solving all problems of society — and then there are the naysayers that fear any new type of innovation because we don't know the harm of it."

Lindsay said the fears about nanotechnology aren't well founded.

"There is a fear of the unknown, which makes me angry because we are so irrational of the hazards in our every day life," Lindsay said.

Graduate student Ashley Kibel has worked with nanotechnology since she earned her bachelor's degree from ASU in physics in 2005.

Kibel worked closely on the DNA sequencer project with Lindsay.

"The excitement you get when you see a result that is interesting — the excitement you get when you've spent two years of work and nothing comes of it and finally there's something — makes it worth a million bucks," Kibel said.

It is impossible to know at this point when a DNA sequencer might be used in the medical field, she said.

"We have a lot of work to get done, but we have made great progress," Kibel said.

####

For more information, please click here

Contacts:
Kyle Patton

Copyright © Arizona State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Transparent Conductive Films and Sensors Are Hot Segments in Printed Electronics: Start-ups in these fields show above-average momentum, while companies working on emissive displays such as OLED are fading, Lux Research says April 17th, 2014

Harris & Harris Group Continues Its Blog Series to Highlight Most Impactful Portfolio Companies With Champions Oncology, Inc. April 17th, 2014

'Life Redesigned: The Emergence of Synthetic Biology' Lecture at Brookhaven Lab on Wednesday, April 30: Biomedical Engineer James Collins to Speak for BSA Distinguished Lecture Series April 16th, 2014

ECHA Planning Workshop on Regulatory Challenges in the Risk Assessment of Nanomaterials April 16th, 2014

Possible Futures

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Surface Characteristics Influence Cellular Growth on Semiconductor Material March 12th, 2014

The "Tipping Point" February 12th, 2014

Nanomedicine

Harris & Harris Group Continues Its Blog Series to Highlight Most Impactful Portfolio Companies With Champions Oncology, Inc. April 17th, 2014

UT Arlington physicist creates new nanoparticle for cancer therapy April 16th, 2014

Nanobiotix Appoints Thierry Otin as Head of Manufacturing and Supply April 15th, 2014

PAM-XIAMEN Offers UV LED wafer April 15th, 2014

Announcements

Transparent Conductive Films and Sensors Are Hot Segments in Printed Electronics: Start-ups in these fields show above-average momentum, while companies working on emissive displays such as OLED are fading, Lux Research says April 17th, 2014

Harris & Harris Group Continues Its Blog Series to Highlight Most Impactful Portfolio Companies With Champions Oncology, Inc. April 17th, 2014

Aerotech X-Y ball-screw stage for economical high performance Planar positioning April 16th, 2014

Energy Research Facility Construction Project at Brookhaven Lab Wins U.S. Energy Secretary's Achievement Award April 16th, 2014

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Energy Research Facility Construction Project at Brookhaven Lab Wins U.S. Energy Secretary's Achievement Award April 16th, 2014

IDTechEx Printed Electronics Europe 2014 Award Winners April 1st, 2014

Dais Analytic Wins SBIR Grant: Dais Analytic Receives US Army Small Business Innovation Research Grant to Further Its Demonstrated Successes in Cleaning Most Forms of Wastewater March 28th, 2014

Scientists develop world’s first light-activated antimicrobial surface that also works in the dark March 24th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE