Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > ASU researchers going new places with nanotechnology

TINY TECHNOLOGY: Postgraduate student Ashley Kibel displays some the nanochips used in her nanotechnology research, focused on biomimicry. The scale of a nano is roughly 40,000 times smaller than the width of a human hair. (Photo by Michael Arellano)
TINY TECHNOLOGY: Postgraduate student Ashley Kibel displays some the nanochips used in her nanotechnology research, focused on biomimicry. The scale of a nano is roughly 40,000 times smaller than the width of a human hair. (Photo by Michael Arellano)

Abstract:
ASU scientists using nanotechnology are proving that bigger isn't always better.

ASU researchers going new places with nanotechnology

Tempe, AZ | Posted on February 17th, 2010

Nanotechnology, research and technology development at the atomic or molecular level, is a field ASU has delved into to advance understanding in bioscience.

ASU scientists are developing a DNA sequencer they say could one day redefine the world of medicine.

Stuart Lindsay is leading the team of researchers in creating a new device that could map human DNA at a record pace. Lindsay is a professor and the director of the Biodesign Institute's Center for Single Molecule Biophysics.

"In principle, our main goal is fast DNA sequencing that is going to personalize medicine" Stuart said.

Essentially, the sequencer would work like a miniscule barcode reader, but instead of reading labels, it would read genetic code, giving an accurate readout of an individual's medicinal needs based on his or her DNA.

Scientists hope it will become a useful tool for diagnosis and treatment for future patients.

Similar projects that aim to map or read parts of the human genome using technologies outside of nanoscience can take years and cost substantially more, Biodesign Institute spokesman Joseph Caspermeyer said.

"Sequencing technology is based in a multi-billion dollar industry," Caspermeyer said "The Human Genome Project took about a dozen years and cost billions of dollars."

The Human Genome Project, an international scientific effort to map and identify DNA, took 13 years from its start in 1990 to produce completed data.

The capabilities of nanotechnology change all that, Caspermeyer said.

"In the future, our project aims to make it possible for a DNA sequencing to be as typical as an ordinary blood test," he said.

Caspermeyer described nanotechnology as taking existing technology and shrinking it.

ASU's nanotechnology research is funded by a combination of investments and grants.

"There is a competitive process for getting funding from federal agencies," he said.

About one in 10 institutions that apply for nanotechnology funding actually receive grants, Caspermeyer said.

"So there is a 90 percent chance that as a nanotechnology researcher, you are going to get turned down," he said.

ASU is one of the few colleges in the nation that does extensive nanotechnology research, he said.

With any new science comes new risk, Caspermeyer said, and critics argue that nanotechnology could create problems for people that scientists cannot accurately predict.

"You're creating particles and chemicals that probably have not existed before," Caspermeyer said, "On top of that, there are environmental concerns."

In response to these concerns, Caspermeyer said ASU has a section of research dedicated to analyzing risk.

"We have a group here studying social ramifications of nanotechnology," he said. "There is a combination of too much hype at this point.

"Those that see it as a panacea solving all problems of society and then there are the naysayers that fear any new type of innovation because we don't know the harm of it."

Lindsay said the fears about nanotechnology aren't well founded.

"There is a fear of the unknown, which makes me angry because we are so irrational of the hazards in our every day life," Lindsay said.

Graduate student Ashley Kibel has worked with nanotechnology since she earned her bachelor's degree from ASU in physics in 2005.

Kibel worked closely on the DNA sequencer project with Lindsay.

"The excitement you get when you see a result that is interesting the excitement you get when you've spent two years of work and nothing comes of it and finally there's something makes it worth a million bucks," Kibel said.

It is impossible to know at this point when a DNA sequencer might be used in the medical field, she said.

"We have a lot of work to get done, but we have made great progress," Kibel said.

####

For more information, please click here

Contacts:
Kyle Patton

Copyright © Arizona State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Animal study shows flexible, dissolvable silicon device promising for brain monitoring: Other applications include post-operative observation for vascular, cardiac, and orthopaedic procedures, finds Penn study May 5th, 2016

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

Clues on the path to a new lithium battery technology: Charging produces highly reactive singlet oxygen in lithium air batteries May 5th, 2016

Possible Futures

Animal study shows flexible, dissolvable silicon device promising for brain monitoring: Other applications include post-operative observation for vascular, cardiac, and orthopaedic procedures, finds Penn study May 5th, 2016

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

Clues on the path to a new lithium battery technology: Charging produces highly reactive singlet oxygen in lithium air batteries May 5th, 2016

Nanomedicine

Animal study shows flexible, dissolvable silicon device promising for brain monitoring: Other applications include post-operative observation for vascular, cardiac, and orthopaedic procedures, finds Penn study May 5th, 2016

Unique nano-capsules promise the targeted drug delivery: Russian scientists created unique nano-capsules for the targeted drug delivery May 5th, 2016

The intermediates in a chemical reaction photographed 'red-handed' Researchers at the UPV/EHU-University of the Basque Country have for the first time succeeded in imaging all the steps in a complex organic reaction and have resolved the mechanisms that explain it May 4th, 2016

Nuclear pores captured on film: Using an ultra fast-scanning atomic force microscope, researchers from the University of Basel have filmed 'living' nuclear pore complexes at work for the first time May 3rd, 2016

Announcements

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

Clues on the path to a new lithium battery technology: Charging produces highly reactive singlet oxygen in lithium air batteries May 5th, 2016

Unique nano-capsules promise the targeted drug delivery: Russian scientists created unique nano-capsules for the targeted drug delivery May 5th, 2016

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Animal study shows flexible, dissolvable silicon device promising for brain monitoring: Other applications include post-operative observation for vascular, cardiac, and orthopaedic procedures, finds Penn study May 5th, 2016

Molybdenum disulfide holds promise for light absorption: Rice researchers probe light-capturing properties of atomically thin MoS2 May 5th, 2016

A compact, efficient single photon source that operates at ambient temperatures on a chip: Highly directional single photon source concept is expected to lead to a significant progress in producing compact, cheap, and efficient sources of quantum information bits for future appls May 3rd, 2016

An Experiment Seeks to Make Quantum Physics Visible to the Naked Eye May 3rd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic