Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Mitsubishi Electric Achieves 14.8% Conversion Efficiency in Thin-film Silicon Solar Cell

Abstract:
Triple junction structure enables high conversion efficiency for more solar-power output

Mitsubishi Electric Achieves 14.8% Conversion Efficiency in Thin-film Silicon Solar Cell

Tokyo | Posted on February 17th, 2010

Mitsubishi Electric Corporation (TOKYO: 6503) announced today that it has achieved a very high photoelectric conversion efficiency of 14.8% in a 5mm x 5mm thin-film silicon photovoltaic (PV) cell. Photoelectric conversion efficiency is the rate at which sunlight energy is converted into electric current, with higher rates meaning more output. The thin-film silicon PV cell developed by Mitsubishi Electric has a triple junction structure that utilizes a majority of the solar spectrum for higher efficiency.

At present, crystalline silicon is used commonly for PV cells. Due to their relatively high photoelectric conversion efficiency, crystalline silicon PV modules are widely used in applications with limited surfaces, such as on the roofs of residential houses. The price of silicon wafers can fluctuate greatly, however, due to changes in market demand.

Thin-film silicon PV cells are garnering attention because they use just 1% the amount of silicon material required for crystalline silicon PV cells, which helps to save resources as well as reduce costs. Although thin-film silicon PV cells are lower in photoelectric conversion efficiency than crystalline silicon PV cells, their lower product costs offer benefits for midsized and large industrial PV systems, such as those used in factories, electric power utilities and municipalities. In addition to expected growth in these fields, there is great upside potential in other fields if their efficiency can be improved in the coming years.

Multi-junction layers offer an efficient way of raising conversion efficiency in thin-film silicon PV cells because each layer absorbs different wavelengths of sunlight. It is extremely difficult, however, to adjust the characteristics of each layer in the multi-junction structure, so most thin film silicon PV cells today are only single or double layered.

Mitsubishi Electric, however, has met a technological breakthrough to achieve 14.8% photoelectric conversion efficiency, according to its own evaluation, by using a triple-junction configuration in which the first layer absorbs short wavelengths and the third layer absorbs long wavelengths, thereby enabling the use of a wide solar spectrum from visible light to infrared rays. Key technologies that help to make this possible include:

* Semiconductor materials that tune to a particular frequency of the spectrum
* High-quality film-deposition processing for each layer
* Texture fabrication applied to transparent electrodes for optimal confinement of sunlight

Mitsubishi Electric intends to further continue its research and development with aims to raise the photoelectric conversion efficiency of its thin-film PV cells by improving cell structure, materials, processing and other factors, aiming to develop advanced PV systems that contribute to sustainable, low-carbon societies.

Background

PV systems are garnering increasing attention as a means to tackle global warming. Although the global PV market temporarily shrank from the latter half of 2008 due to the worldwide recession, it is expected to recover and continue growing after 2010.

Patents

The technologies announced in this press release encompass 118 Japanese and 16 international patents pending.

####

About Mitsubishi Electric
With over 85 years of experience in providing reliable, high-quality products to both corporate clients and general consumers all over the world, Mitsubishi Electric Corporation (TOKYO: 6503) is a recognized world leader in the manufacture, marketing and sales of electrical and electronic equipment used in information processing and communications, space development and satellite communications, consumer electronics, industrial technology, energy, transportation and building equipment. The company recorded consolidated group sales of 3,665.1 billion yen (US$ 37.4 billion*) in the fiscal year ended March 31, 2009.

For more information visit global.mitsubishielectric.com

*At an exchange rate of 98 yen to the US dollar, the rate given by the Tokyo Foreign Exchange Market on March 31, 2009.

For more information, please click here

Contacts:
Media Contact
Public Relations Division
Mitsubishi Electric Corporation
Tel: +81-3-3218-3380

Copyright © Mitsubishi Electric

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

How to maximize the superconducting critical temperature in a molecular superconductor: International team led by Tohoku University opens new route for discovering high Tc superconductors April 19th, 2015

Engineer improves rechargeable batteries with MoS2 nano 'sandwich' April 18th, 2015

Nanocomposites Play Effective Role in Production of Smart Fibers April 18th, 2015

Dais Analytic Corporation Appoints Eliza Wang to Board of Directors: Company's Newest Director Brings Expertise in Commercial and Legal Matters Both in the United States and China; Joins on the Heels of Successful Business Development Trade Mission to China April 18th, 2015

Thin films

Cobalt film a clean-fuel find: Rice University discovery is efficient, robust at drawing hydrogen and oxygen from water April 15th, 2015

The microscopic topography of ink on paper: Researchers have analyzed the varying thickness of printed toner in unprecedented 3-D detail, yielding insights that could lead to higher quality, less expensive and more environmentally-friendly glossy and non-glossy papers April 14th, 2015

New understanding of electromagnetism could enable 'antennas on a chip' April 9th, 2015

LAMDAMAP 2015 hosted by the University March 26th, 2015

Possible Futures

A glass fiber that brings light to a standstill: By coupling photons to atoms, light in a glass fiber can be slowed down to the speed of an express train; for a short while it can even be brought to a complete stop April 9th, 2015

Nanotechnology in Medical Devices Market is expected to reach $8.5 Billion by 2019 March 25th, 2015

Nanotechnology Enabled Drug Delivery to Influence Future Diagnosis and Treatments of Diseases March 21st, 2015

Nanocomposites Market Growth, Industry Outlook To 2020 by Grand View Research, Inc. March 21st, 2015

Announcements

How to maximize the superconducting critical temperature in a molecular superconductor: International team led by Tohoku University opens new route for discovering high Tc superconductors April 19th, 2015

Iranian Foodstuff, Agricultural Industries Welcome Nanotechnology Packaging Bags April 18th, 2015

Nanocomposites Play Effective Role in Production of Smart Fibers April 18th, 2015

Dais Analytic Corporation Appoints Eliza Wang to Board of Directors: Company's Newest Director Brings Expertise in Commercial and Legal Matters Both in the United States and China; Joins on the Heels of Successful Business Development Trade Mission to China April 18th, 2015

Energy

Dais Analytic Corporation Appoints Eliza Wang to Board of Directors: Company's Newest Director Brings Expertise in Commercial and Legal Matters Both in the United States and China; Joins on the Heels of Successful Business Development Trade Mission to China April 18th, 2015

Major advance in artificial photosynthesis poses win/win for the environment: Berkeley Lab researchers perform solar-powered green chemistry with captured CO2 April 16th, 2015

Newly-Developed Nanocatalysts Increase Performance of Fuel Cells April 16th, 2015

Graphenea embarks on a new era April 16th, 2015

Solar/Photovoltaic

The microscopic topography of ink on paper: Researchers have analyzed the varying thickness of printed toner in unprecedented 3-D detail, yielding insights that could lead to higher quality, less expensive and more environmentally-friendly glossy and non-glossy papers April 14th, 2015

Graphene pushes the speed limit of light-to-electricity conversion: Researchers from ICFO, MIT and UC Riverside have been able to develop a graphene-based photodetector capable of converting absorbed light into an electrical voltage at ultrafast timescales April 14th, 2015

Iranian Scientists Use Ultrasound Waves to Produce Fullerene April 9th, 2015

Wrapping carbon nanotubes in polymers enhances their performance: Scientists at Japan's Kyushu University say polymer-wrapped carbon nanotubes hold much promise in biotechnology and energy applications March 30th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE