Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Mitsubishi Electric Achieves 14.8% Conversion Efficiency in Thin-film Silicon Solar Cell

Abstract:
Triple junction structure enables high conversion efficiency for more solar-power output

Mitsubishi Electric Achieves 14.8% Conversion Efficiency in Thin-film Silicon Solar Cell

Tokyo | Posted on February 17th, 2010

Mitsubishi Electric Corporation (TOKYO: 6503) announced today that it has achieved a very high photoelectric conversion efficiency of 14.8% in a 5mm x 5mm thin-film silicon photovoltaic (PV) cell. Photoelectric conversion efficiency is the rate at which sunlight energy is converted into electric current, with higher rates meaning more output. The thin-film silicon PV cell developed by Mitsubishi Electric has a triple junction structure that utilizes a majority of the solar spectrum for higher efficiency.

At present, crystalline silicon is used commonly for PV cells. Due to their relatively high photoelectric conversion efficiency, crystalline silicon PV modules are widely used in applications with limited surfaces, such as on the roofs of residential houses. The price of silicon wafers can fluctuate greatly, however, due to changes in market demand.

Thin-film silicon PV cells are garnering attention because they use just 1% the amount of silicon material required for crystalline silicon PV cells, which helps to save resources as well as reduce costs. Although thin-film silicon PV cells are lower in photoelectric conversion efficiency than crystalline silicon PV cells, their lower product costs offer benefits for midsized and large industrial PV systems, such as those used in factories, electric power utilities and municipalities. In addition to expected growth in these fields, there is great upside potential in other fields if their efficiency can be improved in the coming years.

Multi-junction layers offer an efficient way of raising conversion efficiency in thin-film silicon PV cells because each layer absorbs different wavelengths of sunlight. It is extremely difficult, however, to adjust the characteristics of each layer in the multi-junction structure, so most thin film silicon PV cells today are only single or double layered.

Mitsubishi Electric, however, has met a technological breakthrough to achieve 14.8% photoelectric conversion efficiency, according to its own evaluation, by using a triple-junction configuration in which the first layer absorbs short wavelengths and the third layer absorbs long wavelengths, thereby enabling the use of a wide solar spectrum from visible light to infrared rays. Key technologies that help to make this possible include:

* Semiconductor materials that tune to a particular frequency of the spectrum
* High-quality film-deposition processing for each layer
* Texture fabrication applied to transparent electrodes for optimal confinement of sunlight

Mitsubishi Electric intends to further continue its research and development with aims to raise the photoelectric conversion efficiency of its thin-film PV cells by improving cell structure, materials, processing and other factors, aiming to develop advanced PV systems that contribute to sustainable, low-carbon societies.

Background

PV systems are garnering increasing attention as a means to tackle global warming. Although the global PV market temporarily shrank from the latter half of 2008 due to the worldwide recession, it is expected to recover and continue growing after 2010.

Patents

The technologies announced in this press release encompass 118 Japanese and 16 international patents pending.

####

About Mitsubishi Electric
With over 85 years of experience in providing reliable, high-quality products to both corporate clients and general consumers all over the world, Mitsubishi Electric Corporation (TOKYO: 6503) is a recognized world leader in the manufacture, marketing and sales of electrical and electronic equipment used in information processing and communications, space development and satellite communications, consumer electronics, industrial technology, energy, transportation and building equipment. The company recorded consolidated group sales of 3,665.1 billion yen (US$ 37.4 billion*) in the fiscal year ended March 31, 2009.

For more information visit global.mitsubishielectric.com

*At an exchange rate of 98 yen to the US dollar, the rate given by the Tokyo Foreign Exchange Market on March 31, 2009.

For more information, please click here

Contacts:
Media Contact
Public Relations Division
Mitsubishi Electric Corporation
Tel: +81-3-3218-3380

Copyright © Mitsubishi Electric

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Quantum networks: Back and forth are not equal distances! July 28th, 2015

Smart hydrogel coating creates 'stick-slip' control of capillary action July 27th, 2015

Industrial Nanotech, Inc. Provides Update on PCAOB Audited Financials July 27th, 2015

Global Corrosion Resistant Nano Coatings Market To 2015: Acute Market Reports July 27th, 2015

Thin films

Iranian Scientists Create Best Conditions for Synthesis of Gold Nanolayers July 23rd, 2015

ORNL researchers make scalable arrays of 'building blocks' for ultrathin electronics July 22nd, 2015

Industrial Nanotech, Inc. Introduces Ultra Thin High Performance Thermal Insulation Film for Cooling Personal Electronic Devices July 21st, 2015

Imec Makes Steady Progress on Perovskite Photovoltaic Module reaching a Record 11 Percent Conversion Efficiency July 16th, 2015

Possible Futures

Smaller, faster, cheaper: A new type of modulator for the future of data transmission July 27th, 2015

Researchers predict material with record-setting melting point July 27th, 2015

Global Corrosion Resistant Nano Coatings Market To 2015: Acute Market Reports July 27th, 2015

Global Zinc oxide nanopowders Industry 2015: Acute Market Reports July 25th, 2015

Announcements

Quantum networks: Back and forth are not equal distances! July 28th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Industrial Nanotech, Inc. Provides Update on PCAOB Audited Financials July 27th, 2015

Global Corrosion Resistant Nano Coatings Market To 2015: Acute Market Reports July 27th, 2015

Energy

Smaller, faster, cheaper: A new type of modulator for the future of data transmission July 27th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Industrial Nanotech, Inc. Provides Update on PCAOB Audited Financials July 27th, 2015

Ultra-thin hollow nanocages could reduce platinum use in fuel cell electrodes July 24th, 2015

Solar/Photovoltaic

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Rice University finding could lead to cheap, efficient metal-based solar cells: Plasmonics study suggests how to maximize production of 'hot electrons' July 22nd, 2015

Perovskite solar technology shows quick energy returns: New technology beats current solar panel technology in life-cycle energy assessment July 20th, 2015

Nanowires give 'solar fuel cell' efficiency a tenfold boost: Eindhoven researchers make important step towards a solar cell that generates hydrogen July 17th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project