Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > The Future in Two Words: Ionic Liquids

Abstract:
These molecular soups can be many things to many people in many different applications, including next-generation solar cells, hydrogen fuel cells, and lithium batteries. This may be what caught the eye of the U.S. Department of Energy (DOE), awarding Castner and his colleagues a grant for $2.4 million to delve into the nature of charge-transfer properties of ionic liquids. Previously, his Rutgers ionic liquids research was supported by the American Chemical Society's Petroleum Research Fund. In addition to the new DOE funding, the Rutgers ionic liquids fundamental research is also funded by the National Science Foundation.

The Future in Two Words: Ionic Liquids

New Brunswick, NJ | Posted on February 16th, 2010

Ionic liquids by definition contain ions - atoms positively or negatively charged because they have too few or too many electrons or some other imbalance in their charge. Even with this imbalance, these ions are stable and exist freely in a solution, not bound to any other atoms as they would be in neutral (uncharged) compounds.

Successful with the DOE proposal, Castner is now the lead principal investigator on a three-year DOE-funded program. With his four co-principal investigators from Penn State, University of Iowa, University of Minnesota, and Brookhaven National Laboratory, Castner and his Rutgers colleagues have assembled a top research team for investigating the properties of ionic liquids.

Batteries are a key energy technology, but they can only charge and discharge their electrical energy relatively slowly - think how long it can take a cell phone or computer battery to recharge. When the sun rises or sets on the Rutgers Solar Farm on the Livingston Campus, or when a hybrid car like a Toyota Prius uses regenerative braking technology, high performance capacitors are required.

New supercapacitors and ultracapacitors based on ionic liquid technology will do an even better job than the current technologies. Castner hopes to merge their basic science projects for understanding ionic liquids to help the Rutgers Energy Storage Research Group develop next-generation ultracapacitors and batteries.

Hydrogen fuel cells, a potential successor to conventional batteries, work best at temperatures well above the boiling point of water; evaporative losses can damage the device performance. Because ionic liquids almost never boil and are stable to high temperatures, fuel cells based on ionic liquids are expected to display enhanced performance.

####

About Rutgers University
Rutgers, The State University of New Jersey, is a leading national public research university and the state’s preeminent, comprehensive public institution of higher education. Rutgers is dedicated to teaching that meets the highest standards of excellence; to conducting research that breaks new ground; and to turning knowledge into solutions for local, national, and global communities.

As it was at our founding in 1766, the heart of our mission is preparing students to become productive members of society and good citizens of the world. Rutgers teaches across the full educational spectrum: preschool to precollege; undergraduate to graduate and postdoctoral; and continuing education for professional and personal advancement. Rutgers is New Jersey’s land-grant institution and one of the nation’s foremost research universities, and as such, we educate, make discoveries, serve as an engine of economic growth, and generate ideas for improving people’s lives.

For more information, please click here

Contacts:
Office of Media Relations
Alexander Johnston Hall
101 Somerset St. New Brunswick, NJ 08901-1281
732-932-7084

Copyright © Rutgers University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Quantum manipulation power for quantum information processing gets a boost: Improving the efficiency of quantum heat engines involves reducing the number of photons in a cavity, ultimately impacting quantum manipulation power October 14th, 2017

Possible Futures

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Announcements

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

On the road to fire-free, lithium-ion batteries made with asphalt October 12th, 2017

Organic/inorganic sulfur may be key for safe rechargeable lithium batteries October 12th, 2017

How to draw electricity from the bloodstream: A one-dimensional fluidic nanogenerator with a high power-conversion efficiency September 11th, 2017

A revolution in lithium-ion batteries is becoming more realistic September 5th, 2017

Fuel Cells

Hydrogen power moves a step closer: Physicists are developing methods of creating renewable fuel from water using quantum technology September 15th, 2017

More durable, less expensive fuel cells: University of Delaware researchers have developed a new technology that could speed up the commercialization of fuel cell vehicles September 5th, 2017

Engineers pioneer platinum shell formation process – and achieve first-ever observation August 11th, 2017

Argonne National Laboratory’s Continuous ALD Technology Licensed Exclusively to Forge Nano July 7th, 2017

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

On the road to fire-free, lithium-ion batteries made with asphalt October 12th, 2017

Single ‘solitons’ promising for optical technologies October 9th, 2017

Alliances/Trade associations/Partnerships/Distributorships

More 22 of 59,885 Print all In new window Leti to Present Update of CoolCube/3DVLSI Technologies Development at 2017 IEEE S3S: Future Developments and Tape-Out Vehicles to Be Presented during Oct. 17 Workshop October 12th, 2017

Quorum announces new customer support and demonstration facilities for users worldwide October 10th, 2017

GLOBALFOUNDRIES and Soitec Enter Into Long-term Supply Agreement on FD-SOI Wafers: Strategic milestone to help guarantee a secure, high-volume supply of FD-SOI technology September 20th, 2017

GLOBALFOUNDRIES Unveils Vision and Roadmap for Next-Generation 5G Applications: Technology platforms are uniquely positioned to enable a new era of ‘connected intelligence’ with the transition to 5G September 20th, 2017

Solar/Photovoltaic

New nanomaterial can extract hydrogen fuel from seawater: Hybrid material converts more sunlight and can weather seawater's harsh conditions October 4th, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project