Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > For Nanowires, Nothing Sparkles Quite Like Diamond

A new diamond nanowire matrix yields a stream of single photons emitted when excited by green light
A new diamond nanowire matrix yields a stream of single photons emitted when excited by green light

Abstract:
Diamond nanowires emit single photons, providing new options for high-speed computing, advanced imaging and secure communication

For Nanowires, Nothing Sparkles Quite Like Diamond

Arlington, VA | Posted on February 16th, 2010

Diamonds are renowned for their seemingly flawless physical beauty and their interplay with light.Now researchers are taking advantage of the mineral's imperfections to control that light at the atomic scale, generating one photon at a time.

A team of engineers and applied physicists from Harvard University, the Technical University of Munich and Texas A&M has sculpted a novel nanowire from diamond crystal and shown that the wire can act as a source of single photons. The team reported its findings online Feb. 14 in the journal Nature Nanotechnology.

To create their diamond nanowire device, the researchers took advantage of the same physical processes that give some colored diamonds their hues. For example, when a diamond appears blue or yellow, the pure carbon of the diamond crystal has been sullied by scattered impurities that were incorporated into the carbon while the diamond was forming. Atoms of boron result in a blue diamond; atoms of nitrogen yield a yellow diamond.

The interloping atoms are trapped within their solid-state host, causing the perfect diamond latticework to bend to accommodate the imperfections and ultimately changing the electronic states in the atoms. In jewelry, the result is stunning color. In the nanowires, the result is a device that can generate a high flux of individual photons.

"The diamond nanowire device acts as a nanoscale antenna that funnels the emission of single photons from the embedded color center into a microscope lens," said lead researcher Marko Loncar of the School for Engineering and Applied Sciences (SEAS) at Harvard.

For the device, the researchers focused on diamond engineered with Nitrogen-Vacancy (NV) centers, where nitrogen atoms are adjacent to vacancies in the surrounding diamond crystal lattice. Researchers have known about NV centers for some time, and have demonstrated their utility for quantum communications, quantum computing, and nanoscale magnetic-field sensing. But until now, researchers had not engineered the diamond host, yielding a complete device that can be integrated into existing technologies.

"Using a standard manufacturing process, the team has achieved the unique combination of a nanostructure with an embedded defect, all within a commercially available crystal," said Dominique Dagenais, an expert in NSF's Division of Electrical, Communications and Cyber Systems who is familiar with the team's work. "The resulting device may prove easy to couple into a standard optical fiber, Dagenais added. "This novel approach is a key technological step towards achieving fast, secure computing and communication."

The current product is an array with thousands of diamond nanowires--each only a few millionths of a meter tall and 200 billionths of a meter in diameter--sitting on top of the macroscopic diamond crystal from which they came.

Because the NV centers are not uniformly distributed in the original diamond crystal, each wire has its imperfection in a different location, resulting in varied coupling between the NV centers and the diamond nanowire antennas. In the future, a technique called ion implantation could be used to generate the defect centers at predetermined locations, optimizing the devices.

"This exciting result is the first time the tools of nanofabrication have been applied to diamond crystals in order to control the optical properties of a single defect," said Loncar. "We hope that the greater diamond community will be able to leverage the excellent performance of this single photon source."

Loncar's co-authors included graduate student Tom Babinec, research scholar Birgit Hausmann, graduate student Yinan Zhang, and postdoctoral student Mughees Khan, all at SEAS; graduate student Jero Maze in the department of physics at Harvard; and faculty member Phil R. Hemmer at Texas A&M University.

The researchers acknowledge the following support: Nanoscale Interdisciplinary Research Team (NIRT) grant from National Science Foundation (NSF), the NSF-funded Nanoscale Science and Engineering Center at Harvard (NSEC); the Defense Advanced Research Projects Agency (DARPA); and a National Defense Science and Engineering Graduate Fellowship and National Science Foundation Graduate Fellowship. All devices have been fabricated at the Center for Nanoscale Systems (CNS) at Harvard. Loncar is also the recipient of an NSF CAREER award.

Read more about the work in the Harvard University press release at news.harvard.edu/gazette/story/2010/02/digging-deep-into-diamonds/

####

About National Science Foundation
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2010, its budget is about $6.9 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives over 45,000 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.

For more information, please click here

Contacts:
Media Contacts
Joshua A. Chamot
NSF
(703) 292-7730


Michael Patrick Rutter
Harvard
617-496-3815


Program Contacts
Dominique Dagenais
NSF
(703) 292-2980


Principal Investigators
Marko Loncar
Harvard
617-496-3815


Co-Investigators
Tom Babinec
Harvard
617-496-3815


Copyright © National Science Foundation

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Study reveals how herpes virus tricks the immune system February 5th, 2016

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Organic crystals allow creating flexible electronic devices: The researchers from the Faculty of Physics of the Moscow State University have grown organic crystals that allow creating flexible electronic devices February 5th, 2016

Researchers discover new phase of boron nitride and a new way to create pure c-BN February 5th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Researchers discover new phase of boron nitride and a new way to create pure c-BN February 5th, 2016

Scientists guide gold nanoparticles to form 'diamond' superlattices: DNA scaffolds cage and coax nanoparticles into position to form crystalline arrangements that mimic the atomic structure of diamond February 4th, 2016

Polar vortices observed in ferroelectric: New state of matter holds promise for ultracompact data storage and processing February 4th, 2016

Possible Futures

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Scientists guide gold nanoparticles to form 'diamond' superlattices: DNA scaffolds cage and coax nanoparticles into position to form crystalline arrangements that mimic the atomic structure of diamond February 4th, 2016

Using mathematics to improve human health February 3rd, 2016

Scientists have put a high precision blood assay into a simple test strip: Researchers have developed a new biosensor test system based on magnetic nanoparticles February 3rd, 2016

Chip Technology

Organic crystals allow creating flexible electronic devices: The researchers from the Faculty of Physics of the Moscow State University have grown organic crystals that allow creating flexible electronic devices February 5th, 2016

Scientists guide gold nanoparticles to form 'diamond' superlattices: DNA scaffolds cage and coax nanoparticles into position to form crystalline arrangements that mimic the atomic structure of diamond February 4th, 2016

Polar vortices observed in ferroelectric: New state of matter holds promise for ultracompact data storage and processing February 4th, 2016

Electrons and liquid helium advance understanding of zero-resistance: Study of electrons on liquid helium systems sheds light on zero-resistance phenomenon in semiconductors February 2nd, 2016

Announcements

Study reveals how herpes virus tricks the immune system February 5th, 2016

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Organic crystals allow creating flexible electronic devices: The researchers from the Faculty of Physics of the Moscow State University have grown organic crystals that allow creating flexible electronic devices February 5th, 2016

Researchers discover new phase of boron nitride and a new way to create pure c-BN February 5th, 2016

Military

Scientists guide gold nanoparticles to form 'diamond' superlattices: DNA scaffolds cage and coax nanoparticles into position to form crystalline arrangements that mimic the atomic structure of diamond February 4th, 2016

Researchers develop completely new kind of polymer: Hybrid polymers could lead to new concepts in self-repairing materials, drug delivery and artificial muscles January 30th, 2016

Nano-coating makes coaxial cables lighter: Rice University scientists replace metal with carbon nanotubes for aerospace use January 28th, 2016

Scientists build a neural network using plastic memristors: A group of Russian and Italian scientists have created a neural network based on polymeric memristors -- devices that can potentially be used to build fundamentally new computers January 28th, 2016

Photonics/Optics/Lasers

Organic crystals allow creating flexible electronic devices: The researchers from the Faculty of Physics of the Moscow State University have grown organic crystals that allow creating flexible electronic devices February 5th, 2016

Scientists guide gold nanoparticles to form 'diamond' superlattices: DNA scaffolds cage and coax nanoparticles into position to form crystalline arrangements that mimic the atomic structure of diamond February 4th, 2016

Nature Materials: Smallest lattice structure worldwide: 3-D lattice with glassy carbon struts and braces of less than 200 nm in diameter has higher specific strength than most solids February 3rd, 2016

Silicon-based metamaterials could bring photonic circuits February 1st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic