Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Silicon-coated Nanonets Could Build a Better Lithium-ion Battery

Frame (a) shows a schematic of the Nanonet, a lattice structure of Titanium disilicide (TiSi2), coated with silicon (Si) particles to form the active component for Lithium-ion storage. (b) A microscopic view of the silicon coating on the Nanonets. (c) Shows the crystallinity of the Nanonet core and the Si coating. (d) The crystallinity of TiSi2 and Si (highlighted by the dotted red line) is shown in this lattice-resolved image from transmission electron microscopy. (Source: Nano Letters)
Frame (a) shows a schematic of the Nanonet, a lattice structure of Titanium disilicide (TiSi2), coated with silicon (Si) particles to form the active component for Lithium-ion storage. (b) A microscopic view of the silicon coating on the Nanonets. (c) Shows the crystallinity of the Nanonet core and the Si coating. (d) The crystallinity of TiSi2 and Si (highlighted by the dotted red line) is shown in this lattice-resolved image from transmission electron microscopy. (Source: Nano Letters)

Abstract:
Unique nanotech structure demonstrates higher speed, capacity and longevity

Silicon-coated Nanonets Could Build a Better Lithium-ion Battery

Chestnut Hill, MA | Posted on February 15th, 2010

A tiny scaffold-like titanium structure of Nanonets coated with silicon particles could pave the way for faster, lighter and longer-lasting Lithium-ion batteries, according to a team of Boston College chemists who developed the new anode material using nanotechnology.

The web-like Nanonets developed in the lab of Boston College Assistant Professor of Chemistry Dunwei Wang offer a unique structural strength, more surface area and greater conductivity, which produced a charge/re-charge rate five to 10 times greater than typical Lithium-ion anode material, a common component in batteries for a range of consumer electronics, according to findings published in the current online edition of the American Chemical Society journal Nano Letters.

In addition, the Nanonets proved exceptionally durable, showing a negligible drop-off in capacity during charge and re-charge cycles. The researchers observed an average of 0.1% capacity fade per cycle between the 20th and the 100th cycles.

"As researchers pursue the next generation of re-chargeable Lithium-ion battery technology, a premium has been placed on increased power and a greater battery life span," said Wang. "In that context, the Nanonet device makes a giant leap toward those two goals and gives us a superior anode material."

Lithium-ion batteries are commonly used in consumer electronics devices. This type of rechargeable battery allows Lithium ions to move from the anode electrode to the cathode when in use. When charged, the ions move from cathode back to the anode.

The structure and conductivity of the Nanonets improved the ability to insert and extract Lithium ions from the particulate Silicon coating, the team reported. Running at a charge/discharge rate of 8,400 milliamps per gram (mA/g) - which is approximately five to 10 times greater than similar devices - the specific capacity of the material was greater than 1,000 milliamps-hour per gram (mA-h/g). Typically, laptop Lithium-ion batteries are rated anywhere between 4,000 and 12,000 mA/h, meaning it would only take between four and 12 grams of the Nanonet anode material to achieve similar capacity.

Wang said the capability to preserve the crystalline Titanium Silicon core during the charge/discharge process was the key to achieving the high performance of the Nanonet anode material. Additional research in his lab will examine the performance of the Nanonet as a cathode material.

View the Nano Letters paper at pubs.acs.org/doi/abs/10.1021/nl903345f


####

About Boston College
Boston College is one of the oldest Jesuit, Catholic universities in the United States. U.S. News and World Report ranks Boston College 34th among national universities.

Boston College confers more than 4,000 degrees annually in more than 50 fields of study through nine schools and colleges. Faculty members are committed to both teaching and research and have set new marks for research grant awards over the last ten years, more than $45 million in the last year alone.

For more information, please click here

Contacts:
Ed Hayward
Boston College Office of News & Public Affairs

Copyright © Boston College

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

Possible Futures

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Thermal modification of wood and a complex study of its properties by magnetic resonance May 26th, 2016

Announcements

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Distance wireless charging enhanced by magnetic metamaterials: A metamaterial shell is capable of multiplying transmission efficiency several times over May 13th, 2016

Abalonyx launches Reduced Graphene Oxide Product: Abalonyx has successfully scaled up production of thermally reduced graphene oxide (rGO) in its Tofte, Norway, production facility. This product is now offered to customers in Kg-quantities May 10th, 2016

Visualizing the Lithiation of a Nanosized Iron-Oxide Material in Real Time: Electron microscopy technique reveals the reaction pathways that emerge as lithium ions are added to magnetite nanoparticles May 9th, 2016

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic