Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Setting Out to Discover New, Long-lived Elements

The picture shows the Penning trap, which is part of the Shiptrap experiment. A magnetic field parallel to the tube forces the arriving ions onto a spiral course inside the tube. The ions’ spiraling frequency is used to directly calculate their atomic mass.
The picture shows the Penning trap, which is part of the Shiptrap experiment. A magnetic field parallel to the tube forces the arriving ions onto a spiral course inside the tube. The ions’ spiraling frequency is used to directly calculate their atomic mass.

Abstract:
For the first time, "ion traps" were used to measure super heavy elements

Setting Out to Discover New, Long-lived Elements

Darmstadt, Germany | Posted on February 11th, 2010

Besides the 92 elements that occur naturally, scientists were able to create 20 additional chemical elements, six of which were discovered at the GSI Helmholtz Centre for Heavy Ion Research in Darmstadt. These new elements were produced artificially with particle accelerators and are all very short-lived: they decay in a matter of a split second. However, scientists predict the existence of even heavier elements with an extreme longevity, leaving them to only decay after years. These elements form an island of stability. Scientists at the GSI Helmholtz Centre for Heavy Ion Research in Darmstadt have developed and applied a measuring apparatus that might allow them to discover such long-lived elements, reports the renowned scientific journal Nature.

An international team of scientists headed by Michael Block was able to trap atoms of the element 102, nobelium, in an ion trap. This is the first time in history that a so-called super heavy element had been trapped. Trapping the element allowed the research team to measure the atomic mass of Nobelium with unprecedented accuracy. The atomic mass is one of the most essential characteristics of an atom. It is used to calculate the atom's binding energy, which is what keeps the atom together. The atom's binding energy determines the stability of an atom. With the help of the new measuring apparatus, scientists will be able to identify long-lived elements on the so called islands of stability that can no longer be assigned by their radioactive decay. The island of stability is predicted to be located in the vicinity of the elements 114 to 120.

"Precisely measuring the mass of nobelium with our Shiptrap device was a successful first step. Now, our goal is to improve the measuring apparatus so that we can extend our method to heavier and heavier elements and, one day, may reach the island of stability", says Michael Block, head of the research team at the GSI Helmholtz Centre.

For their measurements, Michael Block and his team built a highly complex apparatus, the ion trap "Shiptrap", and combined it with "Ship", the velocity filter which was already used in the discovery of six short-lived elements at GSI. To produce nobelium, the research team used the GSI accelerator to fire calcium ions onto a lead foil. With the help of Ship, they then separated the freshly produced nobelium from the projectile atoms. Inside the Shiptrap apparatus, the nobelium was first decelerated in a gas-filled cell, then the slow ions were trapped in a so-called Penning trap.

Held inside the trap by electric and magnetic fields, the nobelium ion spun on a minuscule spiral course at a specific frequency. This frequency was used to calculate the atomic mass. With an uncertainty of merely 0.000005%, this new technique allows determining the atomic mass and binding energy with unprecedented precision and, for the first time, directly without the help of theoretical assumptions.

The experiment was a collaboration between GSI, the Max-Planck-Institut für Kernphysik Heidelberg, the Universities Gießen, Greifswald, Heidelberg, Mainz, Munich, Padua (Italy), Jyväskylä (Finland) and Granada (Spain) as well as the PNPI (Petersburg Nuclear Physics Institute) and the JINR (Joint Institute for Nuclear Research) in Russia.

Link to the nature release: www.nature.com/nature/journal/v463/n7282/full/nature08774.html

Link to the summary for the layman: www.nature.com/nature/journal/v463/n7282/full/463740a.html

####

About GSI Helmholtzzentrum für Schwerionenforschung
The goal of the scientific research conducted at the GSI Helmholtz Centre for Heavy Ion Research is to understand the structure and behavior of the world that surrounds us. In addition to broadening our understanding of the world, this knowledge also serves as a basis for technological progress in all areas of our lives.

GSI operates a large, in many aspects worldwide unique accelerator facility for heavy-ion beams. Researchers from around the world use the facility for experiments that help point the way to new and fascinating discoveries in basic research. In addition, the scientists use their findings to continually develop new and impressive applications.

The research program at GSI covers a broad range of activities extending from nuclear and atomic physics to plasma and materials research to biophysics and cancer therapy. Probably the best-known results are the discovery of six new chemical elements and the development of a new type of tumor therapy using ion beams.

For more information, please click here

Contacts:
GSI Helmholtzzentrum für Schwerionenforschung GmbH
Planckstr. 1
64291 Darmstadt
Germany

Public Relations
Contact: Dr. Ingo Peter
Fon: +49-6159-71-2598
Fax: +49-6159-71-2991

Copyright © GSI Helmholtzzentrum für Schwerionenforschung

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanoparticles Increase Durability of Concrete Decorations in Cold Areas January 26th, 2015

Iranian Researchers Boost Solar Cells Efficiency Using Anti-Aggregates January 26th, 2015

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

Physics

Nano-beaker offers insight into the condensation of atoms January 21st, 2015

Atoms can be in 2 places at the same time: Researchers of the University of Bonn have shown that cesium atoms do not follow well-defined paths January 20th, 2015

Self-destructive Effects of Magnetically-doped Ferromagnetic Topological Insulators: Magnetic atoms that create exotic surface property also sow the seeds of its destruction January 19th, 2015

Charge instability detected across all types of copper-based superconductors: Findings may help researchers synthesize materials that can superconduct at room temperature January 16th, 2015

Academic/Education

Rice's Naomi Halas to direct Smalley Institute: Optics pioneer will lead Rice's multidisciplinary science institute January 15th, 2015

SUNY Board Appoints Dr. Alain Kaloyeros as Founding President of SUNY Polytechnic Institute January 13th, 2015

CNSE's Smart System Technology & Commercialization Center Successfully Recertifies as ISO 9001:2008 January 12th, 2015

SUNY Poly Now Accepting Applications to the Colleges of Nanoscale Science and Engineering for Fall 2015: Full Scholarships Available to Incoming CNSE Students January 7th, 2015

Announcements

Nanoparticles Increase Durability of Concrete Decorations in Cold Areas January 26th, 2015

Iranian Researchers Boost Solar Cells Efficiency Using Anti-Aggregates January 26th, 2015

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

Alliances/Partnerships/Distributorships

Smart keyboard cleans and powers itself -- and can tell who you are January 21st, 2015

DNA 'glue' could someday be used to build tissues, organs January 14th, 2015

GLOBALFOUNDRIES and Linear Dimensions to Offer Joint Analog Solution For Fast-Growing Wearables and MEMs Sensors Markets January 9th, 2015

Nanowire clothing could keep people warm -- without heating everything else January 7th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE