Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > UCLA chemists create synthetic 'gene-like' crystals for carbon dioxide capture

Image of 3-D, synthetic DNA-like crystals created by Yaghi, Deng and colleagues. Credit: CNSI, UCLA–Department of Energy Institute of Genomics and Proteomics
Image of 3-D, synthetic DNA-like crystals created by Yaghi, Deng and colleagues. Credit: CNSI, UCLA–Department of Energy Institute of Genomics and Proteomics

Abstract:
UCLA chemists report creating a synthetic "gene" that could capture heat-trapping carbon dioxide emissions, which contribute to global warming, rising sea levels and the increased acidity of oceans.

The research appears in the Feb. 12 issue of the journal Science.

UCLA chemists create synthetic 'gene-like' crystals for carbon dioxide capture

Los Angeles, CA | Posted on February 11th, 2010

"We created three-dimensional, synthetic DNA-like crystals," said UCLA chemistry and biochemistry professor Omar M. Yaghi, who is a member of the California NanoSystems Institute (CNSI) at UCLA and the UCLA-Department of Energy Institute of Genomics and Proteomics. "We have taken organic and inorganic units and combined them into a synthetic crystal which codes information in a DNA-like manner. It is by no means as sophisticated as DNA, but it is certainly new in chemistry and materials science."

The discovery could lead to cleaner energy, including technology that factories and cars can use to capture carbon dioxide before it reaches the atmosphere.

"What we think this will be important for is potentially getting to a viable carbon dioxide-capture material with ultra-high selectivity," said Yaghi, who holds UCLA's Irving and Jean Stone Chair in Physical Sciences and is director of the CNSI's Center for Reticular Chemistry. "I am optimistic that is within our reach. Potentially, we could create a material that can convert carbon dioxide into a fuel, or a material that can separate carbon dioxide with greater efficiency."

The research was federally funded by the U.S. Department of Energy's Office of Basic Energy Sciences. The lead author is Hexiang "DJ" Deng, a UCLA graduate student of chemistry and biochemistry who works in Yaghi's laboratory.

"DNA is a beautiful molecule that has a way to code for information," Yaghi said. "How do you code information in a crystal in the same way that DNA does? DJ and I figured out a way to do this. The sequence of organic functionalities that decorates the pores of the crystals is most certainly a unique code.

"DJ has illustrated that one member of a series of materials he has made has 400 percent better performance in carbon dioxide capture than one that does not have the same code," he said.

In the early 1990s, Yaghi invented a class of materials called metal-organic frameworks (MOFs), sometimes described as crystal sponges, in which he can change the components nearly at will. MOFs have pores — openings on the nanoscale in which Yaghi and his colleagues can store gases that are usually difficult to store and transport. Molecules can go in and out of the pores unobstructed. Yaghi and his research team have made thousands of MOFs.

"We have created crystals of metal-organic frameworks in which the sequence of multiple functionalities of varying kind and ratios acts as a synthetic 'gene,'" Yaghi said. "With these multivariate MOFs, we have figured out a way to incorporate controlled complexity, which biology operates on, in a synthetic crystal — taking synthetic crystals to a new level of performance.

"This can be a boon for energy-related and other industrial applications, such as conversion of gases and liquids like carbon dioxide to fuel, or water to hydrogen, among many others," he said.

Yaghi has been collaborating with his former UCLA chemistry colleague and former CNSI director Sir J. Fraser Stoddart on how to take concepts from biology and incorporate them into a synthetic material.

"We hope the materials we are creating will introduce a new class of structures that have controlled complexity," Yaghi said. "Chemists and materials scientists are now able to ask new questions we have never asked before. Also, new tools for characterizing the sequences and deciphering the codes within the crystals will have to be developed."

Carbon dioxide is polluting Earth's atmosphere and damaging coral reefs and marine life — impacts that are irreversible in our lifetime, Yaghi said.

Co-authors on the study are Christian Doonan and Hiroyasu Furukawa, UCLA postdoctoral scholars in Yaghi's laboratory; Ricardo Ferreira, a UCLA visiting undergraduate; John Towne, a former UCLA undergraduate; Carolyn Knobler, a research associate in Yaghi's laboratory; and Bo Wang, a UCLA postdoctoral scholar in Yaghi's laboratory.

Try 100 times

A few years ago, Yaghi spoke at Shanghai's Fudan University, which is known for having one of the best chemistry departments in China. There, he met Deng, who at the time was an undergraduate student at the university. Deng and his colleagues had tried unsuccessfully to make new MOFs.

"DJ told me, 'Professor, we tried a slight variation to make new MOFs and it did not work,'" Yaghi recalled. "I asked, 'How many times did you try?' He said, 'Two or three times.' I said, 'How about 20 times, 30 times? How about 100 times? If it were that easy, why would it need a smart person like you to do it? Success and excellence do not come that easily.' I said, 'If you really want to learn how to do MOF chemistry, you better come and work with me.' I think that shocked him, but here he is."

How did Deng react to Yaghi's offer?

"Definitely," said Deng, who plans to become a chemistry professor. "And," he added, "the story ends with me trying enough times to get it right. It took me about a hundred more times."

"With MOF chemistry," Yaghi said, "it is not all design; there is a lot of trial and error because we are trying to learn what nature is telling us, and learning that code takes time.

"What is special about DJ and the other students who have worked in my laboratory is that no matter how much you raise the bar, they jump high enough to rise above it," Yaghi said. "It takes a special student to do that, but they are out there, and they need to be inspired. Working with students like DJ that I can challenge in this way is every professor's dream."

####

About UCLA
UCLA is California's largest university, with an enrollment of nearly 38,000 undergraduate and graduate students. The UCLA College of Letters and Science and the university's 11 professional schools feature renowned faculty and offer more than 323 degree programs and majors. UCLA is a national and international leader in the breadth and quality of its academic, research, health care, cultural, continuing education and athletic programs. Five alumni and five faculty have been awarded the Nobel Prize.

For more information, please click here

Contacts:
Media Contacts
Stuart Wolpert
310-206-0511

Copyright © UCLA

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Synthetic Biology

Measuring forces in the DNA molecule: First direct measurements of base-pair bonding strength September 13th, 2016

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

'Green' electronic materials produced with synthetic biology July 16th, 2016

Researchers harness DNA as the engine of super-efficient nanomachine: New platform detects traces of everything from bacteria to viruses, cocaine and metals July 10th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Possible Futures

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Throwing new light on printed organic solar cells December 1st, 2016

New method for analyzing crystal structure: Exotic materials called photonic crystals reveal their internal characteristics with new method November 30th, 2016

Announcements

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Environment

Semiconductor-free microelectronics are now possible, thanks to metamaterials November 9th, 2016

First time physicists observed and quantified tiny nanoparticle crossing lipid membrane November 7th, 2016

Nanosensors on the alert for terrorist threats: Scientists interested in the prospects of gas sensors based on binary metal oxide nanocomposites November 5th, 2016

Marsden minds: Amazing projects revealed November 3rd, 2016

Energy

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Physics, photosynthesis and solar cells: Researchers combine quantum physics and photosynthesis to make discovery that could lead to highly efficient, green solar cells November 30th, 2016

Automotive/Transportation

'Back to the Future' inspires solar nanotech-powered clothing November 15th, 2016

Nanocellulose in medicine and green manufacturing: American University professor develops method to improve performance of cellulose nanocrystals November 7th, 2016

Diamond nanothread: Versatile new material could prove priceless for manufacturing: Would you dress in diamond nanothreads? It's not as far-fetched as you might think November 3rd, 2016

Hybrid nanostructures hold hydrogen well: Rice University scientists say boron nitride-graphene hybrid may be right for next-gen green cars October 25th, 2016

Industrial

Supersonic spray yields new nanomaterial for bendable, wearable electronics: Film of self-fused nanowires clear as glass, conducts like metal November 23rd, 2016

Industrial Nanotech, Inc. Announces Plans to Spin Off New Product Line to Major Paint Compan November 9th, 2016

Forge Nano raises $20 million in Series A Funding: Nano coating technology innovator Forge Nano will use funding to expand manufacturing capacity and grow Lithium-Ion battery opportunities November 3rd, 2016

SUN shares its latest achievements during the 3rd Annual Project Meeting November 1st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project