Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Turning Down the Noise in Quantum Data Storage

Driving a qubit along a longer quantum path (routes 2 and 3) dramatically improves the signal quality over that achieved by following the shorter path (route 1). The research applies to information stored in qubits that consisted of Nitrogen-based defects in diamond, as schematically shown on the right.  Credit: Alan Stonebraker.  Article in Physics physics.aps.org/articles/v3/6
Driving a qubit along a longer quantum path (routes 2 and 3) dramatically improves the signal quality over that achieved by following the shorter path (route 1). The research applies to information stored in qubits that consisted of Nitrogen-based defects in diamond, as schematically shown on the right. Credit: Alan Stonebraker. Article in Physics physics.aps.org/articles/v3/6

Abstract:
A roundabout method of reading data can improve quantum memory

Turning Down the Noise in Quantum Data Storage

College Park, MD | Posted on February 11th, 2010

Researchers who hope to create quantum computers are currently investigating various methods to store data. Nitrogen atoms embedded in diamond show promise for encoding quantum bits (qubits), but the process of reading the information results in an extremely weak signal.

Now physicists have demonstrated a roundabout approach for generating a significantly stronger signal from these sorts of qubits. Their experiment is reported in the current issue of Physical Review B and highlighted with a Viewpoint in the January 19 issue of Physics.

In a quantum computer, a single bit of information is encoded into a property of a quantum mechanical system—the spin of an electron, for example. In most arrangements that rely on Nitrogen atoms in diamond to store data, reading the information also resets the qubit, which means there is only one opportunity to measure the state of the qubit. By developing a technique that involves the spin of the Nitrogen nucleus in the process as well, a team of physicists at the University of Stuttgart in Germany has turned the single step read-out into a multi-step process.

Rather than simply resetting the electron-based qubit when the information is read, the researchers discovered that they can force the state of the Nitrogen nucleus to change state twice before the information in the qubit is finally erased. The state of the Nitrogen nucleus doesn't store any useful information, it simply allows the researchers to add steps to the process of reading the qubit's state. This results in a more convoluted quantum mechanical process that triples the number of events that occur before information is destroyed, which in turn strengthens the signal revealing information stored in the qubit.

The resulting signal is still weak, but by combining other clever methods to the problem researchers might one day be able to use impurities in diamond to read and write quantum information at room temperature—which would bring us much closer to creating practical quantum computers.

####

About APS Physics
APS Physics publishes expert written commentaries and highlights of papers appearing in the journals of the American Physical Society.

For more information, please click here

Contacts:
James Riordon
APS Head of Media Relations
301-209-3238

Copyright © APS Physics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nano Ruffles in Brain Matter: Freiburg researchers decipher the role of nanostructures around brain cells in central nervous system function October 31st, 2014

Gold nanoparticle chains confine light to the nanoscale October 31st, 2014

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

Possible Futures

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Superconducting circuits, simplified: New circuit design could unlock the power of experimental superconducting computer chips October 18th, 2014

Nanocoatings Market By Product Is Expected To Reach USD 8.17 Billion By 2020: Grand View Research, Inc. October 15th, 2014

Perpetuus Carbon Group Receives Independent Verification of its Production Capacity for Graphenes at 140 Tonnes per Annum: Perpetuus Becomes the First Manufacturer in the Sector to Allow Third Party Audit October 7th, 2014

Memory Technology

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Superconducting circuits, simplified: New circuit design could unlock the power of experimental superconducting computer chips October 18th, 2014

Future computers could be built from magnetic 'tornadoes' October 14th, 2014

Research mimics brain cells to boost memory power September 30th, 2014

Quantum Computing

Sussex physicists find simple solution for quantum technology challenge October 28th, 2014

1980s aircraft helps quantum technology take flight October 20th, 2014

Australian teams set new records for silicon quantum computing October 12th, 2014

Ultrafast remote switching of light emission October 2nd, 2014

Announcements

Nano Ruffles in Brain Matter: Freiburg researchers decipher the role of nanostructures around brain cells in central nervous system function October 31st, 2014

Gold nanoparticle chains confine light to the nanoscale October 31st, 2014

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

Quantum nanoscience

NIST quantum probe enhances electric field measurements October 8th, 2014

Quantum environmentalism: Putting a qubit's surroundings to good use October 2nd, 2014

Rice launches Center for Quantum Materials: RCQM will immerse global visitors in cross-disciplinary research September 30th, 2014

Big Results Require Big Ambitions: Three young UCSB faculty receive CAREER awards from the National Science Foundation September 18th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE