Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > News > Going eight separate ways

February 11th, 2010

Going eight separate ways

Abstract:
Symmetry is at the heart of all physics. Predicting the behavior of a material by studying underlying symmetries is one of the oldest and most powerful theoretical techniques, with quite impressive consequences: the symmetry of time invariance gives rise to energy conservation while rotational symmetry underlies the conservation of angular momentum. What then if symmetry is broken? Broken symmetry often hints at exciting new phenomena such as the emergence of the Higgs boson in particle physics, or ferromagnetism in condensed matter physics.

Very recently, two experimental groups—Yue Zhao, Paul Cadden-Zimansky, Zhigang Jiang, and Philip Kim at Columbia University in the US, reporting in the current issue of Physical Review Letters [1], and Harvard's Benjamin Feldman, Jens Martin, and Amir Yacoby, also in the US [2]—have reported on the eightfold symmetry-breaking of the zero-energy Landau level in bilayer graphene systems (Fig. 1). The Columbia experiment used the typical setup of bilayer graphene on a SiO2 substrate [3] and found that the unusual zero-energy quantum Hall octet, while intact at lower magnetic fields, splits up completely into eight separate Landau levels when exposed to 35 T (generated at the National High Magnetic Field Laboratory in Tallahassee, Florida, and close to the limit of what is currently possible for man-made static magnetic fields). The Harvard group used "suspended graphene," an otherwise identical system, but where additional processing is used to remove the supporting SiO2 substrate [4]. They report that the same symmetry breaking occurs at the more moderate magnetic field of about 3 T.

Source:
The American Physical Society

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Physics

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

An Archimedes' screw for groups of quantum particles November 19th, 2016

Materials/Metamaterials

Inside tiny tubes, water turns solid when it should be boiling: MIT researchers discover astonishing behavior of water confined in carbon nanotubes November 30th, 2016

From champagne bubbles, dance parties and disease to new nanomaterials: Understanding nucleation of protein filaments might help with Alzheimer's Disease and type 2 Diabetes November 24th, 2016

Uncovering the secrets of friction on graphene: Sliding on flexible graphene surfaces has been uncharted territory until now November 23rd, 2016

2-D material a brittle surprise: Rice University researchers finds molybdenum diselenide not as strong as they thought November 14th, 2016

Announcements

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Quantum nanoscience

Trickling electrons: Close to absolute zero, the particles exhibit their quantum nature November 10th, 2016

Scientists set traps for atoms with single-particle precision: Technique may enable large-scale atom arrays for quantum computing November 7th, 2016

New technique for creating NV-doped nanodiamonds may be boost for quantum computing November 5th, 2016

Unusual quantum liquid on crystal surface could inspire future electronics October 22nd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project