Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Imec and Holst Centre achieve breakthrough in battery-less radios

Test board of imec and Holst Centres wake up receiver
Test board of imec and Holst Centres wake up receiver

Abstract:
At today's International Solid State Circuit Conference, imec and Holst Centre report a 2.4GHz/915MHz wake-up receiver which consumes only 51W power. This record low power achievement opens the door to battery-less or energy-harvesting based radios for a wide range of applications including long-range RFID and wireless sensor nodes for logistics, smart buildings, healthcare etc.

Imec and Holst Centre achieve breakthrough in battery-less radios

Leuven, Belgium and Eindhoven, The Netherlands | Posted on February 10th, 2010

Today's battery-operated wireless communication systems consume a lot of power at times when the radio does not have to transmit or receive data. This means that most of their time Bluetooth or WLAN radios on mobile phones are taking energy from the battery without adding functionality. Imec and Holst Centre's wake-up receiver with ultra-low power consumption and fast response time can be put in parallel with the conventional radio to switch it on when data needs to received or transmitted.

Imec and Holst Centre developed an innovative radio architecture based on double sampling to overcome the 1/f noise problem. This noise affects most low data rate (10-100kbps) radios. As a consequence, these radios traditionally have a higher power budget than higher data rate radios achieving the same performance. By using a double-sampling technique the offset and 1/f noise is reduced and consequently the sensitivity of the receiver improves proportionally as data-rate scales.

The wake-up receiver chip was implemented in a 90nm digital CMOS technology and occupies an area of 0.36mm2. Measurements on silicon show a sensitivity of -75dBm (SNR>12dB) for the 915MHz receiver at 100kbps OOK (on off keying) modulation. When scaling the data rate to 10kbps and filtering the out-of-band noise, the sensitivity is improved by 5dB. For the 2.4GHz receiver, the sensitivity is -64dBm and -69dBm for 100kbps and 10kbps data rate respectively.

"Within our wireless autonomous sensor system research, we aim to develop wireless sensor systems powered by energy harvested from the environment instead of using batteries. The power budget of such systems is only 100W for the DSP, radio and sensor. This ultra-low power radio of only 51W with small form factor is a major step forward to achieve our goal. It opens the door to many new battery-less applications such as long-range RFID, smart lighting, and sensor tags." said Bert Gyselinckx, general manager imec the Netherlands at Holst Centre.

At this week's International Solid State Circuit Conference, imec and Holst Centre present their newest breakthroughs in ultra-low power design for wireless communications and wireless sensor networks and in organic electronics with an impressive number of contributions including 10 reviewed publications and 6 contributions to tutorials and workshops.

This news release is based on paper 11.5: A 2.4GHz/915MHz 51W Wake-Up Receiver with Offset and Noise Suppression.

####

About imec
Imec performs world-leading research in nano-electronics. Imec leverages its scientific knowledge with the innovative power of its global partnerships in ICT, healthcare and energy. Imec delivers industry-relevant technology solutions. In a unique high-tech environment, its international top talent is committed to providing the building blocks for a better life in a sustainable society.

Imec is headquartered in Leuven, Belgium, and has offices in Belgium, the Netherlands, Taiwan, US, China and Japan. Its staff of more than 1,650 people includes over 550 industrial residents and guest researchers. In 2008, imec's revenue (P&L) was 270 million euro.

About Holst Centre

Holst Centre is an independent open-innovation R&D centre that develops generic technologies for Wireless Autonomous Transducer Solutions and for Systems-in-Foil. A key feature of Holst Centre is its partnership model with industry and academia around shared roadmaps and programs. It is this kind of cross-fertilization that enables Holst Centre to tune its scientific strategy to industrial needs.

Holst Centre was set up in 2005 by imec (Flanders, Belgium) and TNO (The Netherlands) with support from the Dutch Ministry of Economic Affairs and the Government of Flanders. It is named after Gilles Holst, a Dutch pioneer in Research and Development and first director of Philips Research.

Located on High Tech Campus Eindhoven, Holst Centre benefits from the state-of-the-art on-site facilities. Holst Centre has over 150 employees from around 25 nationalities and a commitment from over 20 industrial partners.

For more information, please click here

Contacts:
imec
Katrien Marent
Director of External Communications
T: +32 16 28 18 80
Mobile : +32 474 30 28 66


Holst Centre
Koen Snoeckx
Communication Manager
T: +31 40 277 40 91
Mobile: +31 612 719843

Copyright © imec

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Diamonds closer to becoming ideal semiconductors: Researchers find new method for doping single crystals of diamond May 25th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Possible Futures

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Diamonds closer to becoming ideal semiconductors: Researchers find new method for doping single crystals of diamond May 25th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Chip Technology

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Diamonds closer to becoming ideal semiconductors: Researchers find new method for doping single crystals of diamond May 25th, 2016

Dartmouth team creates new method to control quantum systems May 24th, 2016

Attosecond physics: A switch for light-wave electronics May 24th, 2016

Nanomedicine

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Nanoscale Trojan horses treat inflammation May 24th, 2016

Programmable materials find strength in molecular repetition May 23rd, 2016

Tiny packages may pack powerful treatment for brain tumors: Nanocarrier provides efficient delivery of chemotherapeutic drug May 23rd, 2016

Sensors

Dartmouth team creates new method to control quantum systems May 24th, 2016

Electronic device detects molecules linked to cancer, Alzheimer's and Parkinson's: An inexpensive portable biosensor has been developed by researchers at Brazil's National Nanotechnology Laboratory with FAPESP's support May 20th, 2016

Making organs transparent to improve nanomedicine (video) May 13th, 2016

Scientists take a major leap toward a 'perfect' quantum metamaterial: Berkeley Lab, UC Berkeley researchers lead study that uses trapped atoms in an artificial crystal of light May 13th, 2016

Announcements

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Diamonds closer to becoming ideal semiconductors: Researchers find new method for doping single crystals of diamond May 25th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Distance wireless charging enhanced by magnetic metamaterials: A metamaterial shell is capable of multiplying transmission efficiency several times over May 13th, 2016

Abalonyx launches Reduced Graphene Oxide Product: Abalonyx has successfully scaled up production of thermally reduced graphene oxide (rGO) in its Tofte, Norway, production facility. This product is now offered to customers in Kg-quantities May 10th, 2016

Visualizing the Lithiation of a Nanosized Iron-Oxide Material in Real Time: Electron microscopy technique reveals the reaction pathways that emerge as lithium ions are added to magnetite nanoparticles May 9th, 2016

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic