Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nano for the senses

Micro-optical elements bundle and homogenize the light. (© Fraunhofer IOF)
Micro-optical elements bundle and homogenize the light. (© Fraunhofer IOF)

Abstract:
Pin-sharp projections, light that's whiter than white, varnishes that make sounds if the temperature changes: at nano tech 2010 in Tokyo, Fraunhofer researchers present nanotechnology that is a veritable feast for the senses.

Nano for the senses

Germany | Posted on February 2nd, 2010

A mystical glow emanates from the display case. A white light appears out of nowhere. And a light source is invisible - at least at first glance. Only upon close examination does the source of the apparently supernatural illumination become visible: a light diode, smaller than a pinhead, passes through thousands of infinitesimal lens structures measuring only a few hundred nanometers, et voilà: beaming white light.

"For a long time, producing white light with no peripheral color effects was an almost unsolvable technical problem," explains Dr. Michael Popall of the Fraunhofer Institute for Silicate Research ISC in Wurzburg. "White light is produced by mixing the complementary colors red, green and blue. Undesirable refraction occurs with conventional beamer technology, resulting in colored streaks on the periphery of the projection." This technology - which researchers will present from February 17 to 19 at nano tech 2010 in Tokyo, Hall 3.03 Booth F-14-1 - delivers not only brilliant color, but also pure white: "The tiniest of red, blue and green light diodes on the most condensed space produce the light, which is then bundled and homogenized by the nano-structured ORMOCER® optics," illustrates Popall, who was deeply involved in the development of the material.

"ORMOCER®s are an ideal material for the production of microoptics," concludes the researcher. "They are not only superior light conductors, but are also easy to process - not as brittle as glass, and not as pliant as polymers." In fact, ORMOCER®s are a hybrid of inorganic and organic components that are networked at the molecular level. This material makes it possible to realize things inconceivable even a couple of years ago: Ultra-flat and ultra-small optics for micro-cameras or beamers that fit into a pants pocket. The design of the new ORMOCER® optics, incidentally, was developed by experts at the Fraunhofer Institute for Applied Optics and Precision Engineering IOF in Jena. Popall: "Thanks to close collaboration among chemists at ISC and the physicists and engineers at IOF, we have succeeded in developing ORMOCER® tandem arrays with two-sided and symmetrically arranged micro-lens configurations, which allow the light from light diodes to be projected with pinpoint accuracy and without refraction errors." The new technology has meanwhile reached the verge of market introduction.

Nanotechnology not only puts an entirely new dimension before the eye, it also makes audible things that no ear could ever perceive before: like changes in temperature. A new varnish developed by researchers at the Fraunhofer Institute for Engineering and Automation IPA ensures that surfaces emit sound if they become warmer or cool off. The trick: carbon nano-tubes embedded in the varnish that conduct electricity: If a surface is coated with this varnish, then it can be heated up by application of an electric current. This change in temperature is audible because the warming up surface makes the air around it vibrate. "And this is only one of a myriad of conceivable innovative applications. The surface coating is likewise capable of heating large surfaces and surfaces of complex shape, and in the future, conceivably it can be used as a multifunctional coating for heating, or as a resistance sensor, or as a coating for color displays," says Ivica Kolaric, head of department at IPA.

"The interdisciplinary nature of Fraunhofer is its strength," concludes Popall. The 59 institutes that collaborate within the Fraunhofer Gesellschaft cover a truly broad spectrum - from materials to technology and design, through to processes and the resulting applications. At nano tech 2010 in Tokyo, ISC presents an array of optical materials, ranging from glasses to ORMOCER®s and their nanotechnology, to plastics. IOF contributes high-precision optical design and microtechnology, the Fraunhofer Institute for Electron Beam and Plasma Technology FEP has physical coating technologies. The Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden will additionally display manufacturing processes, such as pressing glass optics or coating with the use of nanolithography. Lastly, IPA will exhibit its prowess with carbon nano-tubes.

####

About Fraunhofer-Gesellschaft
60 years ago, on March 26, 1949, the Fraunhofer-Gesellschaft was founded in the large conference hall of the Bavarian Ministry of the Economy. At the time, the idea was to develop new structures for research after the war's destruction, and to spur reconstruction of the economy.

For more information, please click here

Contacts:
Franz Miller
Head of Press and Public Relations
Headquarters of the Fraunhofer-Gesellschaft
Hansastraße 27c
80686 Munich, Germany

franz.miller(at)zv.fraunhofer.de
Phone +49 89 1205-1300
Fax +49 89 1205-7515

Copyright © Fraunhofer-Gesellschaft

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Columbia Researchers Squeeze Light into Nanoscale Devices and Circuits: Team is first to directly image propagation and dynamics of graphene plasmons at very low temperatures; findings could impact optical communications and signal processing May 23rd, 2018

NIST Puts the Optical Microscope Under the Microscope to Achieve Atomic Accuracy May 22nd, 2018

Magnesium magnificent for plasmonic applications: Rice University, University of Cambridge synthesize and test nanoparticles of abundant material May 22nd, 2018

Self-assembling 3D battery would charge in seconds May 22nd, 2018

Supersonic waves may help electronics beat the heat May 18th, 2018

Chemistry

Magnesium magnificent for plasmonic applications: Rice University, University of Cambridge synthesize and test nanoparticles of abundant material May 22nd, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Display technology/LEDs/SS Lighting/OLEDs

Getting electrons to move in a semiconductor: Gallium oxide shows high electron mobility, making it promising for better and cheaper devices April 24th, 2018

Ancient paper art, kirigami, poised to improve smart clothing: New research shows how paper-cutting can make ultra strong, stretchable electronics April 3rd, 2018

Atomically thin light-emitting device opens the possibility for 'invisible' displays March 26th, 2018

Nanotubes/Buckyballs/Fullerenes/Nanorods

Making carbon nanotubes as usable as common plastics: Researchers discover that cresols disperse carbon nanotubes at unprecedentedly high concentrations May 15th, 2018

'Exceptional' research points way toward quantum discoveries: Rice University scientists make tunable light-matter couplings in nanotube films April 30th, 2018

The first PE blown films with nanotubes hit the Chinese market April 26th, 2018

Plasmons triggered in nanotube quantum wells: Rice, Tokyo Metropolitan scientists create platform for unique near-infrared devices March 16th, 2018

Announcements

Columbia Researchers Squeeze Light into Nanoscale Devices and Circuits: Team is first to directly image propagation and dynamics of graphene plasmons at very low temperatures; findings could impact optical communications and signal processing May 23rd, 2018

NIST Puts the Optical Microscope Under the Microscope to Achieve Atomic Accuracy May 22nd, 2018

Magnesium magnificent for plasmonic applications: Rice University, University of Cambridge synthesize and test nanoparticles of abundant material May 22nd, 2018

Self-assembling 3D battery would charge in seconds May 22nd, 2018

Events/Classes

Disability Can Be a Superpower in Space Disabled astronauts offer unique solutions to emergencies in space May 17th, 2018

SpaceX Founding Employee Tom Mueller to Speak at International Space Development Conference May 15th, 2018

Shrimp, Soybeans, and Tomatoes Top the Menu in Cities in Space May 10th, 2018

Grand Opening of UC Irvine Materials Research Institute (IMRI) to Spotlight JEOL Center for Nanoscale Solutions: Renowned Materials Scientists to Present at the 1st International Symposium on Advanced Microscopy and Spectroscopy (ISAMS) April 18th, 2018

Alliances/Trade associations/Partnerships/Distributorships

Leti and Cellmic Join Forces to Speed Market Adoption of Lens-Free Imaging and Sensing Techniques May 3rd, 2018

Nanobiotix and Weill Cornell Medicine Partner on Pre-Clinical Research Inbox x May 3rd, 2018

New era in high field superconducting magnets – opening new frontiers in science, nanotechnology and materials discovery January 9th, 2018

Leti Field Trials Demonstrate New Multicarrier Waveform for Rural, Maritime Broadband Radio: Field Trial in Orkney Islands Used New Filtered Multicarrier Waveform at 700MHz Band with Flexible Bandwidth Usage (Fragmented and Continuous Spectrum) December 18th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project