Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Nanomaterials get to the heart of the matter

From left, Sarah Baxter, Cathy Murphy, and Edie Goldsmith
From left, Sarah Baxter, Cathy Murphy, and Edie Goldsmith

Abstract:
Having a heart of gold could have new meaning if research led by a team of USC scientists hits paydirt.

Nanomaterials get to the heart of the matter

Columbia, SC | Posted on January 23rd, 2010

The scientists are investigating how injections of nano-sized rods of gold might improve the function of faulty heart valves while eliminating the need for corrective surgery.

"Cardiac valves can become too stiff or too floppy and the heart has to work harder," said Edie Goldsmith, an associate professor in the School of Medicine's Department of Cell Biology and Anatomy. "Valve replacement surgery is an option, but we want to see if we can alter the physical structure and behavior of faulty valves with nanomaterials only."

Goldsmith and mechanical engineering associate professor Sarah Baxter are collaborating with former University chemistry professor Cathy Murphy and Clemson University bioengineering professor Delphine Dean, supported by a two-year exploratory grant from the National Institutes of Health's Heart, Lung and BloodInstitute.

"We've learned that gold nanomaterials like to associate with collagen, a structural protein," Goldsmith said. "There is too much collagen in stiff valves and not enough in floppy valves. We think that the nanomaterials can alter the mechanical properties of the collagen in beneficial ways."

The scientists have found they can modify the nano-sized gold particles with polymers creating a positive or negative surface charge that affect collagen assembly. When exposed to the nanomaterials, collagen production by fibroblasts is altered as is the phenotype of the cells.

"We want to measure the mechanical properties of collagen-fibroblast-nanoparticle constructs to see how the nanomaterials might create positive changes in the cardiac valves," Goldsmith said.

The implications of their research go beyond cardiac valve repair: the researchers plan to test the use of nanomaterials in wound healing and cancer.

"We also want to see if the nanomaterials could be used to manipulate the matrix around a tumor," she said. "You could then isolate the tumor and keep the cancer cells from spreading."

####

For more information, please click here

Contacts:
Office of Media Relations
803-777-5400

Copyright © University of South Carolina

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers engineer improvements of technology used in digital memory November 24th, 2014

Research reveals how our bodies keep unwelcome visitors out of cell nuclei November 24th, 2014

An Inside Job: UC-Designed Nanoparticles Infiltrate, Kill Cancer Cells From Within November 24th, 2014

Cooling with the coldest matter in the world November 24th, 2014

Possible Futures

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Researchers discern the shapes of high-order Brownian motions November 17th, 2014

VDMA Electronics Production Equipment: Growth track for 2014 and 2015 confirmed: Business climate survey shows robust industry sector November 14th, 2014

Open Materials Development Will Be Key for HP's Success in 3D Printing: HP can make a big splash in 3D printing, but it needs to shore up technology claims and avoid the temptation of the razor/razor blade business model in order to flourish November 11th, 2014

Nanomedicine

Research reveals how our bodies keep unwelcome visitors out of cell nuclei November 24th, 2014

ASU, IBM move ultrafast, low-cost DNA sequencing technology a step closer to reality November 24th, 2014

An Inside Job: UC-Designed Nanoparticles Infiltrate, Kill Cancer Cells From Within November 24th, 2014

Iran Exports Nanodrugs to Syria November 24th, 2014

Announcements

Research reveals how our bodies keep unwelcome visitors out of cell nuclei November 24th, 2014

ASU, IBM move ultrafast, low-cost DNA sequencing technology a step closer to reality November 24th, 2014

An Inside Job: UC-Designed Nanoparticles Infiltrate, Kill Cancer Cells From Within November 24th, 2014

Cooling with the coldest matter in the world November 24th, 2014

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

SUNY Poly Student Awarded Fellowship with the U.S. Department of Energy's Postgraduate Research Program: Ph.D. Candidate Accepts Postmaster's Appointment To Conduct Research At Albany NanoTech Complex November 13th, 2014

MEMS Industry Group's 10th Annual Executive Conference Showcases Rapid Innovation in MEMS/Sensors: Emphasizes Spirit of Collaboration, Supporting First Open-Source Algorithm Community, New Standardization Efforts November 10th, 2014

Microrockets fueled by water neutralize chemical and biological warfare agents October 29th, 2014

New nanodevice to improve cancer treatment monitoring October 27th, 2014

Nanobiotechnology

Quantum mechanical calculations reveal the hidden states of enzyme active sites November 20th, 2014

Tokyo Institute of Technology research: Protein-engineered cages aid studies of cell functions November 19th, 2014

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Implementation of DNA Chains in Designing Nanospin Pieces November 9th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE