Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > New visible light photocatalyst kills bacteria, even after light turned off

Jian Ku Shang, a professor of materials science and engineering, holds a sample of a new photocatalytic material that uses visible light to destroy harmful bacteria and viruses, even in the dark.
Jian Ku Shang, a professor of materials science and engineering, holds a sample of a new photocatalytic material that uses visible light to destroy harmful bacteria and viruses, even in the dark.

Abstract:
In the battle against bacteria, researchers at the University of Illinois have developed a powerful new weapon - an enhanced photocatalytic disinfection process that uses visible light to destroy harmful bacteria and viruses, even in the dark.

New visible light photocatalyst kills bacteria, even after light turned off

Champaign, IL | Posted on January 19th, 2010

Based upon a new catalyst, the disinfection process can be used to purify drinking water, sanitize surgical instruments and remove unwanted fingerprints from delicate electrical and optical components.

"The new catalyst also has a unique catalytic memory effect that continues to kill deadly pathogens for up to 24 hours after the light is turned off," said Jian Ku Shang, a professor of materials science and engineering at the U. of I.

Shang is corresponding author of a paper that is scheduled to appear in the Journal of Materials Chemistry, and posted on the journal's Web site.

Shang's research group had previously developed a catalytic material that worked with visible light, instead of the ultraviolet light required by other catalysts. This advance, which was made by doping a titanium-oxide matrix with nitrogen, meant the disinfection process could be activated with sunlight or with standard indoor lighting.

"When visible light strikes this catalyst, electron-hole pairs are produced in the matrix," Shang said. "Many of these electrons and holes quickly recombine, however, severely limiting the effectiveness of the catalyst."

To improve the efficiency of the catalyst, Shang and collaborators at the U. of I. and at the Chinese Academy of Sciences added palladium nanoparticles to the matrix. The palladium nanoparticles trap the electrons, allowing the holes to react with water to produce oxidizing agents, primarily hydroxyl radicals, which kill bacteria and viruses.

When the light is turned off, the palladium nanoparticles slowly release the trapped electrons, which can then react with water to produce additional oxidizing agents.

"In a sense, the material remembers that it was radiated with light," Shang said. "This memory effect' can last up to 24 hours."

Although the disinfection efficiency in the dark is not as high as it is in visible light, it enables the continuous operation of a unique, robust catalytic disinfection system driven by solar or other visible light illumination.

In addition to environmental applications, the new catalyst could also be used to remove messy, oily fingerprints from optical surfaces, computer displays and cellphone screens, Shang said.

The work was supported by the National Science Foundation through the Center of Advanced Materials for the Purification of Water with Systems at the U. of I. Some of the work was performed at the U. of I.'s Frederick Seitz Materials Research Laboratory, which is partially supported by the U.S. Department of Energy.

Editor's note: To contact Jian Ku Shang, call 217-333-9268 or e-mail

####

For more information, please click here

Contacts:
James E. Kloeppel
Physical Sciences Editor
217-244-1073

Copyright © University of Illinois at Urbana-Champaign

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Harris & Harris Group Notes Announcements by Its Portfolio Companies During the Third Quarter of 2016 September 30th, 2016

INVECAS to Enable ASIC Designs for Tomorrows Intelligent Systems on GLOBALFOUNDRIES' FDX Technology: INVECAS to Collaborate with GLOBALFOUNDRIES to Provide IP and End-to-End ASIC Design Services on 22FDX and 12FDX Technologies September 30th, 2016

How to power up graphene implants without frying cells: New analysis finds way to safely conduct heat from graphene to biological tissues September 30th, 2016

Innovation in Nanotechnology is Focus of Symposium: Annual event brings international experts to Northwestern Oct. 6 September 29th, 2016

Chemistry

Chains of nanogold forged with atomic precision September 23rd, 2016

Carbon-coated iron catalyst structure could lead to more-active fuel cells September 15th, 2016

Researchers build world's largest database of crystal surfaces and shapes September 14th, 2016

On-surface chemistry leads to novel products: On-surface chemical Reactions can lead to novel chemical compounds not yet synthesized by solution chemistry. September 13th, 2016

Products

Particle Works launches range of high quality magnetic nanoparticles August 31st, 2016

Oxford Nanoimaging to provide desktop super-resolution microscopes May 10th, 2016

Abalonyx launches Reduced Graphene Oxide Product: Abalonyx has successfully scaled up production of thermally reduced graphene oxide (rGO) in its Tofte, Norway, production facility. This product is now offered to customers in Kg-quantities May 10th, 2016

New Generation of Graphene Reinforced Carbon Fibre Prepreg Products March 14th, 2016

Govt.-Legislation/Regulation/Funding/Policy

How to power up graphene implants without frying cells: New analysis finds way to safely conduct heat from graphene to biological tissues September 30th, 2016

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

PHENOMEN is a FET-Open Research Project aiming to lay the foundations a new information technology September 19th, 2016

Announcements

Harris & Harris Group Notes Announcements by Its Portfolio Companies During the Third Quarter of 2016 September 30th, 2016

INVECAS to Enable ASIC Designs for Tomorrows Intelligent Systems on GLOBALFOUNDRIES' FDX Technology: INVECAS to Collaborate with GLOBALFOUNDRIES to Provide IP and End-to-End ASIC Design Services on 22FDX and 12FDX Technologies September 30th, 2016

How to power up graphene implants without frying cells: New analysis finds way to safely conduct heat from graphene to biological tissues September 30th, 2016

Innovation in Nanotechnology is Focus of Symposium: Annual event brings international experts to Northwestern Oct. 6 September 29th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Nanosensors could help determine tumors ability to remodel tissue: Measuring enzyme levels could help doctors select appropriate treatments September 29th, 2016

Fighting cancer with sticky nanoparticles September 27th, 2016

Gold nanoparticles conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2 mediated pathway in breast cancer September 27th, 2016

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

Environment

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Mathematical nanotoxicoproteomics: Quantitative characterization of effects of multi-walled carbon nanotubes: This research article by Dr. Subhash Basak et al. will be published in Current Computer-Aided Drug Design, Volume 12, 2016 September 2nd, 2016

Nanofur for oil spill cleanup: Materials researchers learn from aquatic ferns: Hairy plant leaves are highly oil-absorbing / publication in bioinspiration & biomimetics / video on absorption capacity August 25th, 2016

Researchers watch catalysts at work August 19th, 2016

Water

Oxford Instruments systems now facilitate water purification technology September 27th, 2016

Atomic scale pipes available on demand and by design September 9th, 2016

University of Akron researchers find thin layers of water can become ice-like at room temperature: Results could lead to an assortment of anti-friction solutions August 30th, 2016

SLAC, Stanford gadget grabs more solar energy to disinfect water faster: Plopped into water, a tiny device triggers the formation of chemicals that kill microbes in minutes August 15th, 2016

Alliances/Trade associations/Partnerships/Distributorships

INVECAS to Enable ASIC Designs for Tomorrows Intelligent Systems on GLOBALFOUNDRIES' FDX Technology: INVECAS to Collaborate with GLOBALFOUNDRIES to Provide IP and End-to-End ASIC Design Services on 22FDX and 12FDX Technologies September 30th, 2016

PHENOMEN is a FET-Open Research Project aiming to lay the foundations a new information technology September 19th, 2016

SEMI and MSIG Join Together in Strategic Association Partnership: MEMS & Sensors Industry Group Brings New MEMS and Sensors Community to SEMI to Increase Combined Member Value September 15th, 2016

Leti and Oberthur Technologies Partner to Explore New Solutions in Fast-growing Digital Era September 12th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic