Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > News > Beyond the Abstract - Biological in situ dose painting for image-guided radiation therapy using drug-loaded implantable devices

January 18th, 2010

Beyond the Abstract - Biological in situ dose painting for image-guided radiation therapy using drug-loaded implantable devices

Abstract:
Methods to augment the biological action of radiation therapy in prostate and other tumors without additional toxicity to surrounding normal tissues would be useful for improving the therapeutic ratio.

In order to achieve high spatial accuracy, modern radiation therapy practice routinely utilizes implantation of fiducials (external beam therapy) or radioactive source spacers (brachytherapy) into the tumor. These implantable devices are an essential technical component of radiation delivery during Image Guided Radiation Therapy (IGRT), but are inert and provide no direct therapeutic function.

The next step will be to test the method (termed BIS-IGRT, Biological In-Situ enhanced IGRT) in animal models. A series of drug-loaded devices is under development for this purpose, in collaboration with nanotechnology and nanomedicine experts at Northeastern University, in order to look at the tumor-sensitizing properties of the implants.

Source:
urotoday.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

'Find the Lady' in the quantum world: International team of researchers presents method for quantum-mechanical swapping of positions October 18th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Nanomedicine

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Arrowhead Pharmaceuticals to Present Preclinical Data on ARO-AAT at The Liver Meeting(R) October 10th, 2017

Arrowhead to Present at Chardan Gene Therapy Conference October 3rd, 2017

'CRISPR-Gold' fixes Duchenne muscular dystrophy mutation in mice October 3rd, 2017

Announcements

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Nanobiotechnology

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Arrowhead Pharmaceuticals to Present Preclinical Data on ARO-AAT at The Liver Meeting(R) October 10th, 2017

Arrowhead to Present at Chardan Gene Therapy Conference October 3rd, 2017

'CRISPR-Gold' fixes Duchenne muscular dystrophy mutation in mice October 3rd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project