Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanosystems Capture and Destroy Circulating Tumor Cells

Abstract:
Just as fly paper captures insects, a pair of nanotechnology-enabled devices are able to grab cancer cells in the blood that have broken off from a tumor. These cells, known as circulating tumor cells, or CTCs, can provide critical information for examining and diagnosing cancer metastasis, determining patient prognosis, and monitoring the effectiveness of therapies.

Nanosystems Capture and Destroy Circulating Tumor Cells

Bethesda, MD | Posted on January 14th, 2010

In a study published in the journal Angewandte Chemie International Edition, a team of investigators at the University of California, Los Angeles, developed a 1-by-2-centimeter silicon chip that is covered with densely packed nanopillars coated with an antibody that binds to a protein known as epithelial-cell adhesion molecule (EpCAM). EpCAM is expressed on the surface of a wide variety of solid-tumor cells but not by cells normally found circulating in the blood stream. The research team was led by Hsian-Rong Tseng, Ph.D., a member of the Nanosystems Biology Cancer Center, one of eight Centers of Cancer Nanotechnology Excellence established by the National Cancer Institute.

To test cell-capture performance, researchers incubated the nanopillar chip in a culture medium with breast cancer cells. As a control, they performed a parallel experiment with a cell-capture method that uses a chip with a flat surface. Both structures were coated with anti-EpCAM, an antibody protein that can help recognize and capture tumor cells. The researchers found that the cell-capture yields for the UCLA nanopillar chip were significantly higher; the device captured 45 to 65 percent of the cancer cells in the medium, compared with only 4 to 14 percent for the flat device.

The current gold standard for examining the disease status of tumors is an analysis of metastatic solid biopsy samples, but in the early stages of metastasis, it is often difficult to identify a biopsy site. By capturing CTCs, doctors may be able to perform a "liquid" biopsy, allowing for early detection and diagnosis, as well as improved treatment monitoring.

Meanwhile, a research team headed by Vladimir Zharov, Ph.D., of the University of Arkansas for Medical Sciences (UAMS), has developed a system that traps CTCs directly in the bloodstream, where they can then be removed by microsurgery or destroyed using a laser that does not harm the skin or other tissues. This work was published in two papers, one appearing the journal Biophotonics, the other in the journal Nature Nanotechnology. Dr. Lily Yang, Ph.D., of Emory University and a member of the Emory-Georgia Tech Center for Cancer Nanotechnology Excellence, also participated in this study.

The UAMS system consists of two types of nanoparticles. The first is a magnetic nanoparticle designed to target a molecule known as urokinase plasminogen activator receptor. The second nanoparticle consists of gold-plated carbon nanotubes that target the folic acid receptor. Both receptors are found on many types of cancer cells but not on normal blood cells.

The investigators injected the two nanoparticle cocktail into mice bearing human breast tumors and then waited 20 minutes before using a combination of a magnet attached to skin above peripheral blood vessels to capture the labeled tumor cells and photoacoustic imaging to detect the gold-coated nanotubes that also label the captured tumor cells. "By magnetically collecting most of the tumor cells from blood circulating in vessels throughout the whole body, this new method can potentially increase specificity and sensitivity up to 1,000 times compared to existing technology," Dr. Zharov said.

The UCLA group's work, which is detailed in a paper titled, "Three-dimensional nanostructured substrates toward efficient capture of circulating tumor cells," was supported by the NCI Alliance for Nanotechnology in Cancer, a comprehensive initiative designed to accelerate the application of nanotechnology to the prevention, diagnosis, and treatment of cancer. An abstract of this paper is available at the journal's Web site.

View abstract here www3.interscience.wiley.com/journal/122658940/abstract?CRETRY=1&SRETRY=0

The work from UAMS is detailed in two papers titled, "In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells," and "Nanotechnology-based molecular photoacoustic and photothermal flow cytometry platform for in-vivo detection and killing of circulating cancer stem cells." This work was also supported in part by the National Cancer Institute's Alliance for Nanotechnology in Cancer. Abstracts of these papers are available at the respective journals' Web sites.

View abstract here www.nature.com/nnano/journal/v4/n12/abs/nnano.2009.333.html

View abstract here www3.interscience.wiley.com/journal/123197570/abstract

####

About NCI Alliance for Nanotechnology in Cancer
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Copyright © NCI Alliance for Nanotechnology in Cancer

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

HKUST researchers develop a novel integration scheme for efficient coupling between III-V and silicon November 18th, 2022

Researchers at Purdue unlock light-matter interactions on sub-nanometer scales, leading to ‘picophotonics’ November 18th, 2022

Rice turns asphaltene into graphene for composites: ‘Flashed’ byproduct of crude oil could bolster materials, polymer inks November 18th, 2022

How “2D” materials expand: New technique that accurately measures how atom-thin materials expand when heated could help engineers develop faster, more powerful electronic devices November 18th, 2022

Possible Futures

HKUST researchers develop a novel integration scheme for efficient coupling between III-V and silicon November 18th, 2022

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

A new experiment pushes the boundaries of our understanding of topological quantum matter: The behavior of bosonic particles observed in a magnetic insulator fabricated from ruthenium chloride can be explained by a relatively new and little-studied physics phenomenon called the B November 18th, 2022

Trial by wind: Testing the heat resistance of carbon fiber-reinforced ultra-high-temperature ceramic matrix composites: Researchers use an arc-wind tunnel to test the heat resistance of carbon fiber reinforced ultra-high-temperature ceramic matrix composites November 18th, 2022

Nanotubes/Buckyballs/Fullerenes/Nanorods

Current and Future Developments in Nanomaterials and Carbon Nanotubes: Applications of Nanomaterials in Energy Storage and Electronics October 28th, 2022

Buckyballs on gold are less exotic than graphene July 22nd, 2022

Strain-sensing smart skin ready to deploy: Nanotube-embedded coating detects threats from wear and tear in large structures July 15th, 2022

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Nanomedicine

Cutting-edge combination shows promise in patients with chemotherapy-resistant urothelial cancer November 4th, 2022

Advanced nanoparticles provide new weapon to fight difficult cancers: Researchers use nanoparticles to deliver a bacterially derived compound that targets the STING pathway to suppress tumor growth and metastasis by disrupting blood vessels and stimulating immune response October 28th, 2022

Smart materials: metal cations-recognizable thermoresponsive polymers: Osaka Metropolitan University scientists developed a novel polymer, the thermoresponsiveness of which can easily be regulated by changing the type and mixing ratio of ionic species October 14th, 2022

Quantum-Si’s next-generation single-molecule protein sequencing technology published in Science, signaling new era of life science and biomedical research: Semiconductor chip and Time Domain Sequencing™ technology will advance drug discovery and diagnostics, enabling people to li October 14th, 2022

Announcements

HKUST researchers develop a novel integration scheme for efficient coupling between III-V and silicon November 18th, 2022

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

A new experiment pushes the boundaries of our understanding of topological quantum matter: The behavior of bosonic particles observed in a magnetic insulator fabricated from ruthenium chloride can be explained by a relatively new and little-studied physics phenomenon called the B November 18th, 2022

How “2D” materials expand: New technique that accurately measures how atom-thin materials expand when heated could help engineers develop faster, more powerful electronic devices November 18th, 2022

Nanobiotechnology

Cutting-edge combination shows promise in patients with chemotherapy-resistant urothelial cancer November 4th, 2022

Advanced nanoparticles provide new weapon to fight difficult cancers: Researchers use nanoparticles to deliver a bacterially derived compound that targets the STING pathway to suppress tumor growth and metastasis by disrupting blood vessels and stimulating immune response October 28th, 2022

Smart materials: metal cations-recognizable thermoresponsive polymers: Osaka Metropolitan University scientists developed a novel polymer, the thermoresponsiveness of which can easily be regulated by changing the type and mixing ratio of ionic species October 14th, 2022

Quantum-Si’s next-generation single-molecule protein sequencing technology published in Science, signaling new era of life science and biomedical research: Semiconductor chip and Time Domain Sequencing™ technology will advance drug discovery and diagnostics, enabling people to li October 14th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project