Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nanosystems Capture and Destroy Circulating Tumor Cells

Abstract:
Just as fly paper captures insects, a pair of nanotechnology-enabled devices are able to grab cancer cells in the blood that have broken off from a tumor. These cells, known as circulating tumor cells, or CTCs, can provide critical information for examining and diagnosing cancer metastasis, determining patient prognosis, and monitoring the effectiveness of therapies.

Nanosystems Capture and Destroy Circulating Tumor Cells

Bethesda, MD | Posted on January 14th, 2010

In a study published in the journal Angewandte Chemie International Edition, a team of investigators at the University of California, Los Angeles, developed a 1-by-2-centimeter silicon chip that is covered with densely packed nanopillars coated with an antibody that binds to a protein known as epithelial-cell adhesion molecule (EpCAM). EpCAM is expressed on the surface of a wide variety of solid-tumor cells but not by cells normally found circulating in the blood stream. The research team was led by Hsian-Rong Tseng, Ph.D., a member of the Nanosystems Biology Cancer Center, one of eight Centers of Cancer Nanotechnology Excellence established by the National Cancer Institute.

To test cell-capture performance, researchers incubated the nanopillar chip in a culture medium with breast cancer cells. As a control, they performed a parallel experiment with a cell-capture method that uses a chip with a flat surface. Both structures were coated with anti-EpCAM, an antibody protein that can help recognize and capture tumor cells. The researchers found that the cell-capture yields for the UCLA nanopillar chip were significantly higher; the device captured 45 to 65 percent of the cancer cells in the medium, compared with only 4 to 14 percent for the flat device.

The current gold standard for examining the disease status of tumors is an analysis of metastatic solid biopsy samples, but in the early stages of metastasis, it is often difficult to identify a biopsy site. By capturing CTCs, doctors may be able to perform a "liquid" biopsy, allowing for early detection and diagnosis, as well as improved treatment monitoring.

Meanwhile, a research team headed by Vladimir Zharov, Ph.D., of the University of Arkansas for Medical Sciences (UAMS), has developed a system that traps CTCs directly in the bloodstream, where they can then be removed by microsurgery or destroyed using a laser that does not harm the skin or other tissues. This work was published in two papers, one appearing the journal Biophotonics, the other in the journal Nature Nanotechnology. Dr. Lily Yang, Ph.D., of Emory University and a member of the Emory-Georgia Tech Center for Cancer Nanotechnology Excellence, also participated in this study.

The UAMS system consists of two types of nanoparticles. The first is a magnetic nanoparticle designed to target a molecule known as urokinase plasminogen activator receptor. The second nanoparticle consists of gold-plated carbon nanotubes that target the folic acid receptor. Both receptors are found on many types of cancer cells but not on normal blood cells.

The investigators injected the two nanoparticle cocktail into mice bearing human breast tumors and then waited 20 minutes before using a combination of a magnet attached to skin above peripheral blood vessels to capture the labeled tumor cells and photoacoustic imaging to detect the gold-coated nanotubes that also label the captured tumor cells. "By magnetically collecting most of the tumor cells from blood circulating in vessels throughout the whole body, this new method can potentially increase specificity and sensitivity up to 1,000 times compared to existing technology," Dr. Zharov said.

The UCLA group's work, which is detailed in a paper titled, "Three-dimensional nanostructured substrates toward efficient capture of circulating tumor cells," was supported by the NCI Alliance for Nanotechnology in Cancer, a comprehensive initiative designed to accelerate the application of nanotechnology to the prevention, diagnosis, and treatment of cancer. An abstract of this paper is available at the journal's Web site.

View abstract here www3.interscience.wiley.com/journal/122658940/abstract?CRETRY=1&SRETRY=0

The work from UAMS is detailed in two papers titled, "In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells," and "Nanotechnology-based molecular photoacoustic and photothermal flow cytometry platform for in-vivo detection and killing of circulating cancer stem cells." This work was also supported in part by the National Cancer Institute's Alliance for Nanotechnology in Cancer. Abstracts of these papers are available at the respective journals' Web sites.

View abstract here www.nature.com/nnano/journal/v4/n12/abs/nnano.2009.333.html

View abstract here www3.interscience.wiley.com/journal/123197570/abstract

####

About NCI Alliance for Nanotechnology in Cancer
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Copyright © NCI Alliance for Nanotechnology in Cancer

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Color effects from transparent 3D printed nanostructures: New design tool automatically creates nanostructure 3D print templates for user-given colors Scientists present work at prestigious SIGGRAPH conference August 18th, 2018

Novel nanoparticle-based approach detects and treats oral plaque without drugs August 17th, 2018

UVA multidisciplinary engineering team designs technology for smart materials: The invention could lead to devices and manufactured goods, such as fabrics, that can dynamically regulate between thermally insulating and cooling August 17th, 2018

Smallest transistor worldwide switches current with a single atom in solid electrolyte: Milestone of energy efficiency in information technology -- Publication in Advanced Materials August 17th, 2018

Possible Futures

Color effects from transparent 3D printed nanostructures: New design tool automatically creates nanostructure 3D print templates for user-given colors Scientists present work at prestigious SIGGRAPH conference August 18th, 2018

Novel nanoparticle-based approach detects and treats oral plaque without drugs August 17th, 2018

UVA multidisciplinary engineering team designs technology for smart materials: The invention could lead to devices and manufactured goods, such as fabrics, that can dynamically regulate between thermally insulating and cooling August 17th, 2018

Smallest transistor worldwide switches current with a single atom in solid electrolyte: Milestone of energy efficiency in information technology -- Publication in Advanced Materials August 17th, 2018

Nanotubes/Buckyballs/Fullerenes/Nanorods

Nanotube 'rebar' makes graphene twice as tough: Rice University scientists test material that shows promise for flexible electronics August 3rd, 2018

Carbon is the new black: Researchers use carbon nanotubes to develop clothing that can double as batteries July 10th, 2018

Nano-saturn: Supramolecular complex formation: Anthracene macrocycle and C60 fullerene June 8th, 2018

Unzipping graphene nanotubes into nanoribbons: New study shows elegant mathematical solution to understand how the flow of electrons changes when carbon nanotubes turn into zigzag nanoribbons June 6th, 2018

Nanomedicine

Novel nanoparticle-based approach detects and treats oral plaque without drugs August 17th, 2018

Research brief: UMN researchers use green gold to rapidly detect and identify harmful bacteria August 15th, 2018

New technology can detect hundreds of proteins in a single sample: Improvement of barcoding technique offers cost-effective alternative to current technology August 13th, 2018

Scientists squeeze nanocrystals in a liquid droplet into a solid-like state and back again: Simple chemical technique transforms crystal mixture where 2 liquids meet August 9th, 2018

Announcements

Color effects from transparent 3D printed nanostructures: New design tool automatically creates nanostructure 3D print templates for user-given colors Scientists present work at prestigious SIGGRAPH conference August 18th, 2018

Novel nanoparticle-based approach detects and treats oral plaque without drugs August 17th, 2018

UVA multidisciplinary engineering team designs technology for smart materials: The invention could lead to devices and manufactured goods, such as fabrics, that can dynamically regulate between thermally insulating and cooling August 17th, 2018

Smallest transistor worldwide switches current with a single atom in solid electrolyte: Milestone of energy efficiency in information technology -- Publication in Advanced Materials August 17th, 2018

Nanobiotechnology

Novel nanoparticle-based approach detects and treats oral plaque without drugs August 17th, 2018

Research brief: UMN researchers use green gold to rapidly detect and identify harmful bacteria August 15th, 2018

New technology can detect hundreds of proteins in a single sample: Improvement of barcoding technique offers cost-effective alternative to current technology August 13th, 2018

Scientists squeeze nanocrystals in a liquid droplet into a solid-like state and back again: Simple chemical technique transforms crystal mixture where 2 liquids meet August 9th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project