Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > All Smoothed Out

Gold service: The asperities on a polished gold surface are quickly dissolved by the OH. radicals of Fentons reagent. The dissolution of Au is rapid at the beginning of the reaction and is negligible when the asperities have been dissolved. Although the OH. radicals also oxidize the smooth parts of the Au surface, they do not dissolve them, but form a stable oxide monolayer.
Gold service: The asperities on a polished gold surface are quickly dissolved by the OH. radicals of Fentons reagent. The dissolution of Au is rapid at the beginning of the reaction and is negligible when the asperities have been dissolved. Although the OH. radicals also oxidize the smooth parts of the Au surface, they do not dissolve them, but form a stable oxide monolayer.

Abstract:
Hydroxyl radicals remove nanoscopic irregularities on polished gold surfaces

All Smoothed Out

Weinheim, Germany | Posted on January 14th, 2010

The precious metal gold is the material of choice for many technical applications because it does not corrode - and because it also has interesting electrical, magnetic, and optical properties. Gold is thus one of the most important metals in the electronics industry, miniaturized optical components, and electrochemical processes. In these applications, it is extremely important that the surface of the gold be completely clean and smooth. However, conventional processes not only "polish" away the undesirable irregularities, but also attack the gold surface. Fritz Scholz and a team from the Universities of Greifswald (Germany) and Warsaw (Poland) have now discovered a technique that can differentiate between the two. As the scientists report in the journal Angewandte Chemie, hydroxyl radicals (OH radicals) rapidly remove all tiny protrusions on mechanically polished gold surfaces, leaving behind an extremely smooth surface.

The researchers treated gold surfaces with Fenton's reagent, which is a mixture of hydrogen peroxide and iron(II) salts that releases OH radicals. It is also used to degrade organic impurities in the purification of waste water. "Actually, it was not expected that the radicals would attack a polished pure gold surface," says Scholz, "because gold is notoriously difficult to oxidize." The experiments demonstrated that the hydroxyl radicals oxidize gold very well, though measurable dissolution continues only as long as there are still bumps on the gold surface. Though these results seem contradictory at first glance, the researchers explain that the reaction of the radicals with the highly ordered gold atoms of the completely smooth surface produces a stable layer of gold oxide, which can be reduced back to elemental gold without a significant loss of material. In the protrusions, however, the gold atoms are less ordered and very reactive. During the oxidation, they detach themselves from the atomic structure.

"Because the protrusions are selectively removed, our method is very interesting for polishing gold surfaces for industrial applications," says Scholz. The process may also find a use in medical technology: gold is used to replace teeth, in tissues for reconstructive surgery, and in electrode implants, such as those used for implanted hearing aids. These release tiny amounts of gold, which enters into the surrounding tissue. This apparently occurs because of an immune reaction that results in the formation of OH radicals or similar species. Pre-treatment of gold implants with Fenton's reagent could inhibit this release of gold into the body.

Author: Fritz Scholz, Universitšt Greifswald (Germany),

www.chemie.uni-greifswald.de/~analytik/

Title: Hydroxyl Radicals Attack Metallic Gold

Angewandte Chemie International Edition, Permalink: dx.doi.org/10.1002/anie.200906358

####

About Wiley InterScience
Wiley InterScience (www.interscience.wiley.com) provides access to over 3 million articles across nearly 1500 journals and 7000 Online Books and major reference works. It also holds industry leading databases such as The Cochrane Library, chemistry databases and the acclaimed Current Protocols laboratory manuals.

Wiley InterScience is one of the world's premiere resources for study, teaching and advanced research.

For more information, please click here

Contacts:
Editorial office


Amy Molnar (US)


Jennifer Beal (UK)


Alina Boey (Asia)

Copyright © Wiley InterScience

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

Chemistry

Chemistry on the edge: Experiments at Berkeley Lab confirm that structural defects at the periphery are key in catalyst function January 13th, 2017

Researchers produced nitrogen doped bimodal cellular structure activated carbon December 29th, 2016

Safe and inexpensive hydrogen production as a future energy source: Osaka University researchers develop efficient 'green' hydrogen production system that operates at room temperature in air December 21st, 2016

Scientists boost catalytic activity for key chemical reaction in fuel cells: New platinum-based catalysts with tensile surface strain could improve fuel cell efficiency December 19th, 2016

Possible Futures

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

Chip Technology

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

Nanometrics to Announce Fourth Quarter and Full Year Financial Results on February 7, 2017 January 19th, 2017

Nanomedicine

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

New active filaments mimic biology to transport nano-cargo: A new design for a fully biocompatible motility engine transports colloidal particles faster than diffusion with active filaments January 11th, 2017

Discoveries

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

Announcements

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project