Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Using Nanotechnology to Boost the Lifespan of Medical Implants

Professor Leon Shaw with a graduate student in his lab at the Institute of Materials Science. Photo by Peter Morenus
Professor Leon Shaw with a graduate student in his lab at the Institute of Materials Science. Photo by Peter Morenus

Abstract:
His work in the red-hot area of nanotechnology has sparked three NSF-funded research awards for Leon Shaw, a professor in the Department of Chemical, Materials, & Biomolecular Engineering.

Using Nanotechnology to Boost the Lifespan of Medical Implants

Storrs, CT | Posted on January 9th, 2010

Of the three, one marries nano-materials with biomedical engineering. Together with Yong Wang, an assistant professor of chemical, materials, and biomolecular engineering, Shaw will work on developing a titanium/hydroxyapatite orthopedic implant designed to improve implant longevity and reduce the need for revision surgery, thus reducing long-term health care costs and patient stress.

Over 10 million Americans currently carry at least one major implanted medical device in their bodies. Due to their excellent corrosion resistance, superior strength, and biocompatibility, titanium and stainless steel alloys are the principal materials used in most medical implants. Despite their advantages, these alloys also carry major disadvantages: in many cases, their life expectancy is shorter than those of their wearers, prompting additional replacement implant surgeries.

In addition, titanium and steel alloys are unlikely to have the stability or fit of the original tissue, leading to rejection of the implant. While currently available implants may alleviate pain and allow patients to live active lives, there are often complications getting bone to attach to the metal devices. Small gaps between natural bone and the implant can expand over time, requiring additional surgery to replace the implant. Researchers are increasingly turning to nanotechnology for solutions.

To overcome the problems associated with metallic implants, many research organizations and commercial companies have tried to develop orthopedic implants that have a bioactive surface to promote cellular adhesion and bony in-growth. Efforts have been made to create a stable fit that more closely resembles the original tissue, thus eliminating the need for additional surgery to repair the damage or gaps.

The two most widely used methods involve the application of either hydroxyapatite or porous titanium coatings to implant surfaces. The problem is that titanium is not bioactive, whereas hydroxyapatite coatings could delaminate during use. With this in mind, Shaw and Wang have geared their project toward the development of a new family of functionally graded, porous implant materials with a hierarchy of engineered microstructures. This new family of orthopedic implants will address the issues by applying either hydroxyapatite or porous titanium coatings and will be fabricated through a novel solid freeform fabrication method developed in Shaw's laboratory. This type of orthopedic implants is the first of its kind to pair a titanium-rich core and a hydroxyapatite-rich surface with a controlled level of micro- and macro-porosity never produced previously.

Shaw's other NSF grants are also collaborative efforts. Shaw will be teaming with Kennametal Inc., a global leader in hard metal technology. This project is aimed at the development of innovative manufacturing methods that can produce novel materials with superior mechanical properties derived from nanocrystalline powder. The collaboration will ensure that the research is relevant to the hard metal industry and that the results will be disseminated to end users.

The third research project is in collaboration with Mahmoud Zawrah, a researcher from the National Research Center in Cairo, Egypt. Together, they are looking at the processing and fabrication of nano-Si3N4 and SiC composites using the waste material silica fume as the starting material. If successful, this project will lead to advancements in the production of large quantities of high purity nano-composite powders and sintered (or densified) Si3N4/SiC components from silica fume in a reproducible, precise, and economical fashion.

####

About University of Connecticut
Perennially ranked the top public university in New England, the University of Connecticut now stands among the best public institutions in the nation. UConn’s main campus in Storrs is admitting the highest-achieving freshmen in University history. Student diversity continues to increase, as does the number of honors students, valedictorians and salutatorians who consistently make UConn their top choice.

For more information, please click here

Copyright © University of Connecticut

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Dolomite to launch Meros TCU-100 temperature controller at Lab-on-a-Chip & Microarray World Congress September 15th, 2014

Fonon at Cutting-Edge of 3D Military Printing: Live-Combat Scenarios Could See a Decisive Advantage with 3D Printing September 15th, 2014

Rice rolls 'neat' nanotube fibers: Rice University researchers' acid-free approach leads to strong conductive carbon threads September 15th, 2014

Simple, Cost-Effective Method Proposed for Synthesizing Zinc Oxide Nanopigments September 15th, 2014

Govt.-Legislation/Regulation/Funding/Policy

'Squid skin' metamaterials project yields vivid color display: Rice lab creates RGB color display technology with aluminum nanorods September 15th, 2014

Fonon at Cutting-Edge of 3D Military Printing: Live-Combat Scenarios Could See a Decisive Advantage with 3D Printing September 15th, 2014

Seeking Nanoscale Defenses for Biological and Chemical Threats: WPI co-organizes a NATO workshop to improve the detection and decontamination of biological and chemical agents September 13th, 2014

Berkeley Lab Licenses Boron Nitride Nanotube Technology: New material has unique mechanical and electronic properties September 13th, 2014

Nanomedicine

Treatment of Cell Infection by Nanotechnology September 15th, 2014

Researchers Create World’s Largest DNA Origami September 11th, 2014

Iranian Scientists Discover Nanotechnology Method to Remove Limitations in Tumor Surgery September 11th, 2014

Iranian Nanotechnology Scientists Produce Polymeric Scaffolds for Tissue Engineering September 11th, 2014

Announcements

Dolomite to launch Meros TCU-100 temperature controller at Lab-on-a-Chip & Microarray World Congress September 15th, 2014

Fonon at Cutting-Edge of 3D Military Printing: Live-Combat Scenarios Could See a Decisive Advantage with 3D Printing September 15th, 2014

Rice rolls 'neat' nanotube fibers: Rice University researchers' acid-free approach leads to strong conductive carbon threads September 15th, 2014

Simple, Cost-Effective Method Proposed for Synthesizing Zinc Oxide Nanopigments September 15th, 2014

Nanobiotechnology

NanoStruck has a High Recovery Rate on Mine Tailings: retrieval of up to 96% of Gold, 88% of Silver and 86% of Palladium September 12th, 2014

Boosting armor for nuclear-waste eating microbes September 12th, 2014

Researchers Create World’s Largest DNA Origami September 11th, 2014

UO-Berkeley Lab unveil new nano-sized synthetic scaffolding technique: Oil-and-water approach from Richmond's UO lab to spark new line of versatile peptoid nanosheets September 2nd, 2014

Alliances/Partnerships/Distributorships

NEI Corporation and PneumatiCoat Technologies Sign Agreement to Jointly Develop and Market New Materials for Lithium-ion Batteries September 12th, 2014

Handheld scanner could make brain tumor removal more complete, reducing recurrence September 3rd, 2014

Leading European communications companies and research organizations have launched an EU project developing the future 5th Generation cellular mobile networks August 28th, 2014

JPK expands availability of instrumentation in the USA – appointing new distributors – launched a new web site to support the US market - AFM now available to US users August 26th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE