Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Using Nanotechnology to Boost the Lifespan of Medical Implants

Professor Leon Shaw with a graduate student in his lab at the Institute of Materials Science. Photo by Peter Morenus
Professor Leon Shaw with a graduate student in his lab at the Institute of Materials Science. Photo by Peter Morenus

Abstract:
His work in the red-hot area of nanotechnology has sparked three NSF-funded research awards for Leon Shaw, a professor in the Department of Chemical, Materials, & Biomolecular Engineering.

Using Nanotechnology to Boost the Lifespan of Medical Implants

Storrs, CT | Posted on January 9th, 2010

Of the three, one marries nano-materials with biomedical engineering. Together with Yong Wang, an assistant professor of chemical, materials, and biomolecular engineering, Shaw will work on developing a titanium/hydroxyapatite orthopedic implant designed to improve implant longevity and reduce the need for revision surgery, thus reducing long-term health care costs and patient stress.

Over 10 million Americans currently carry at least one major implanted medical device in their bodies. Due to their excellent corrosion resistance, superior strength, and biocompatibility, titanium and stainless steel alloys are the principal materials used in most medical implants. Despite their advantages, these alloys also carry major disadvantages: in many cases, their life expectancy is shorter than those of their wearers, prompting additional replacement implant surgeries.

In addition, titanium and steel alloys are unlikely to have the stability or fit of the original tissue, leading to rejection of the implant. While currently available implants may alleviate pain and allow patients to live active lives, there are often complications getting bone to attach to the metal devices. Small gaps between natural bone and the implant can expand over time, requiring additional surgery to replace the implant. Researchers are increasingly turning to nanotechnology for solutions.

To overcome the problems associated with metallic implants, many research organizations and commercial companies have tried to develop orthopedic implants that have a bioactive surface to promote cellular adhesion and bony in-growth. Efforts have been made to create a stable fit that more closely resembles the original tissue, thus eliminating the need for additional surgery to repair the damage or gaps.

The two most widely used methods involve the application of either hydroxyapatite or porous titanium coatings to implant surfaces. The problem is that titanium is not bioactive, whereas hydroxyapatite coatings could delaminate during use. With this in mind, Shaw and Wang have geared their project toward the development of a new family of functionally graded, porous implant materials with a hierarchy of engineered microstructures. This new family of orthopedic implants will address the issues by applying either hydroxyapatite or porous titanium coatings and will be fabricated through a novel solid freeform fabrication method developed in Shaw's laboratory. This type of orthopedic implants is the first of its kind to pair a titanium-rich core and a hydroxyapatite-rich surface with a controlled level of micro- and macro-porosity never produced previously.

Shaw's other NSF grants are also collaborative efforts. Shaw will be teaming with Kennametal Inc., a global leader in hard metal technology. This project is aimed at the development of innovative manufacturing methods that can produce novel materials with superior mechanical properties derived from nanocrystalline powder. The collaboration will ensure that the research is relevant to the hard metal industry and that the results will be disseminated to end users.

The third research project is in collaboration with Mahmoud Zawrah, a researcher from the National Research Center in Cairo, Egypt. Together, they are looking at the processing and fabrication of nano-Si3N4 and SiC composites using the waste material silica fume as the starting material. If successful, this project will lead to advancements in the production of large quantities of high purity nano-composite powders and sintered (or densified) Si3N4/SiC components from silica fume in a reproducible, precise, and economical fashion.

####

About University of Connecticut
Perennially ranked the top public university in New England, the University of Connecticut now stands among the best public institutions in the nation. UConnís main campus in Storrs is admitting the highest-achieving freshmen in University history. Student diversity continues to increase, as does the number of honors students, valedictorians and salutatorians who consistently make UConn their top choice.

For more information, please click here

Copyright © University of Connecticut

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Transparent, electrically conductive network of encapsulated silver nanowires: A novel electrode for optoelectronics August 1st, 2015

Harris & Harris Group Portfolio Company, HZO, Announces Partnerships with Dell and Motorola August 1st, 2015

Advances and Applications in Biosensing, Sensor Power, and Sensor R&D to be Covered at Sensors Global Summit August 1st, 2015

Kalam: versatility personified August 1st, 2015

Govt.-Legislation/Regulation/Funding/Policy

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

Kalam: versatility personified August 1st, 2015

Heating and cooling with light leads to ultrafast DNA diagnostics July 31st, 2015

Theoretical Physicists at Freie Universitšt Berlin Develop New Insights into Interface between Classical and Quantum Worlds July 31st, 2015

Nanomedicine

Gold-diamond nanodevice for hyperlocalised cancer therapy: Gold nanorods can be used as remote controlled nanoheaters delivering the right amount of thermal treatment to cancer cells, thanks to diamond nanocrystals used as temperature sensors August 1st, 2015

Heating and cooling with light leads to ultrafast DNA diagnostics July 31st, 2015

Take a trip through the brain July 30th, 2015

Sol-gel capacitor dielectric offers record-high energy storage July 30th, 2015

Announcements

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

Transparent, electrically conductive network of encapsulated silver nanowires: A novel electrode for optoelectronics August 1st, 2015

Harris & Harris Group Portfolio Company, HZO, Announces Partnerships with Dell and Motorola August 1st, 2015

Advances and Applications in Biosensing, Sensor Power, and Sensor R&D to be Covered at Sensors Global Summit August 1st, 2015

Nanobiotechnology

Heating and cooling with light leads to ultrafast DNA diagnostics July 31st, 2015

European Technology Platform for Nanomedicine and ENATRANS European Consortium Launch the 2nd edition of the Nanomedicine Award: The Award to be presented at BIO-Europe conference in Munich, November 2015 July 30th, 2015

New computer model could explain how simple molecules took first step toward life: Two Brookhaven researchers developed theoretical model to explain the origins of self-replicating molecules July 28th, 2015

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

Alliances/Trade associations/Partnerships/Distributorships

Harris & Harris Group Portfolio Company, HZO, Announces Partnerships with Dell and Motorola August 1st, 2015

The National Space Society Pays Tribute to Dr. Kalam -- One Of Our Leading Lights Has Joined The Stars August 1st, 2015

Liquipel Debuts Eyesight-Saving ION-Glass Blue Light Protection for iPhones and Androids at RadioShack Stores Nationwide: Liquipel's Unique Protective Screen, Available at RadioShack, Cuts Harmful Blue Light Implicated in Macular Degeneration by 10x July 28th, 2015

Dais Analytic's Business Affiliate in China Announces Ten-Year Strategic Energy Efficiency Business Arrangement With COFCO: Dais Beijing to Perform Feasibility Study on Over 80 Buildings to Improve Efficiencies as Part of Overall Hotel Energy-Savings Project July 23rd, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project