Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Using Nanotechnology to Boost the Lifespan of Medical Implants

Professor Leon Shaw with a graduate student in his lab at the Institute of Materials Science. Photo by Peter Morenus
Professor Leon Shaw with a graduate student in his lab at the Institute of Materials Science. Photo by Peter Morenus

Abstract:
His work in the red-hot area of nanotechnology has sparked three NSF-funded research awards for Leon Shaw, a professor in the Department of Chemical, Materials, & Biomolecular Engineering.

Using Nanotechnology to Boost the Lifespan of Medical Implants

Storrs, CT | Posted on January 9th, 2010

Of the three, one marries nano-materials with biomedical engineering. Together with Yong Wang, an assistant professor of chemical, materials, and biomolecular engineering, Shaw will work on developing a titanium/hydroxyapatite orthopedic implant designed to improve implant longevity and reduce the need for revision surgery, thus reducing long-term health care costs and patient stress.

Over 10 million Americans currently carry at least one major implanted medical device in their bodies. Due to their excellent corrosion resistance, superior strength, and biocompatibility, titanium and stainless steel alloys are the principal materials used in most medical implants. Despite their advantages, these alloys also carry major disadvantages: in many cases, their life expectancy is shorter than those of their wearers, prompting additional replacement implant surgeries.

In addition, titanium and steel alloys are unlikely to have the stability or fit of the original tissue, leading to rejection of the implant. While currently available implants may alleviate pain and allow patients to live active lives, there are often complications getting bone to attach to the metal devices. Small gaps between natural bone and the implant can expand over time, requiring additional surgery to replace the implant. Researchers are increasingly turning to nanotechnology for solutions.

To overcome the problems associated with metallic implants, many research organizations and commercial companies have tried to develop orthopedic implants that have a bioactive surface to promote cellular adhesion and bony in-growth. Efforts have been made to create a stable fit that more closely resembles the original tissue, thus eliminating the need for additional surgery to repair the damage or gaps.

The two most widely used methods involve the application of either hydroxyapatite or porous titanium coatings to implant surfaces. The problem is that titanium is not bioactive, whereas hydroxyapatite coatings could delaminate during use. With this in mind, Shaw and Wang have geared their project toward the development of a new family of functionally graded, porous implant materials with a hierarchy of engineered microstructures. This new family of orthopedic implants will address the issues by applying either hydroxyapatite or porous titanium coatings and will be fabricated through a novel solid freeform fabrication method developed in Shaw's laboratory. This type of orthopedic implants is the first of its kind to pair a titanium-rich core and a hydroxyapatite-rich surface with a controlled level of micro- and macro-porosity never produced previously.

Shaw's other NSF grants are also collaborative efforts. Shaw will be teaming with Kennametal Inc., a global leader in hard metal technology. This project is aimed at the development of innovative manufacturing methods that can produce novel materials with superior mechanical properties derived from nanocrystalline powder. The collaboration will ensure that the research is relevant to the hard metal industry and that the results will be disseminated to end users.

The third research project is in collaboration with Mahmoud Zawrah, a researcher from the National Research Center in Cairo, Egypt. Together, they are looking at the processing and fabrication of nano-Si3N4 and SiC composites using the waste material silica fume as the starting material. If successful, this project will lead to advancements in the production of large quantities of high purity nano-composite powders and sintered (or densified) Si3N4/SiC components from silica fume in a reproducible, precise, and economical fashion.

####

About University of Connecticut
Perennially ranked the top public university in New England, the University of Connecticut now stands among the best public institutions in the nation. UConnís main campus in Storrs is admitting the highest-achieving freshmen in University history. Student diversity continues to increase, as does the number of honors students, valedictorians and salutatorians who consistently make UConn their top choice.

For more information, please click here

Copyright © University of Connecticut

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New technique for exploring structural dynamics of nanoworld: Developed in a Nobel laureate's laboratory at Caltech, hybrid approach allows ultrafast EM analysis of materials, showing tiny electronic changes in individual atoms within a material on ultrafast time scales April 28th, 2015

When mediated by superconductivity, light pushes matter million times more April 28th, 2015

Chemists strike nano-gold: 4 new atomic structures for gold nanoparticle clusters: Research builds upon work by Nobel Prize-winning team from Stanford University April 28th, 2015

Self-assembling biomaterial forms nanostructure templates for human tissue formation April 27th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Chemists strike nano-gold: 4 new atomic structures for gold nanoparticle clusters: Research builds upon work by Nobel Prize-winning team from Stanford University April 28th, 2015

International research team discovers new mechanism behind malaria progression: Findings provide a new avenue for research in malaria treatment April 27th, 2015

More is less in novel electronic material: Adding electrons actually shrinks the system April 27th, 2015

Two-dimensional semiconductor comes clean April 27th, 2015

Nanomedicine

Chemists strike nano-gold: 4 new atomic structures for gold nanoparticle clusters: Research builds upon work by Nobel Prize-winning team from Stanford University April 28th, 2015

Self-assembling biomaterial forms nanostructure templates for human tissue formation April 27th, 2015

International research team discovers new mechanism behind malaria progression: Findings provide a new avenue for research in malaria treatment April 27th, 2015

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

Announcements

New technique for exploring structural dynamics of nanoworld: Developed in a Nobel laureate's laboratory at Caltech, hybrid approach allows ultrafast EM analysis of materials, showing tiny electronic changes in individual atoms within a material on ultrafast time scales April 28th, 2015

When mediated by superconductivity, light pushes matter million times more April 28th, 2015

Chemists strike nano-gold: 4 new atomic structures for gold nanoparticle clusters: Research builds upon work by Nobel Prize-winning team from Stanford University April 28th, 2015

Sensor Designed in Iran Able to Remove Formaldehyde Gas from Environment April 27th, 2015

Nanobiotechnology

Self-assembling biomaterial forms nanostructure templates for human tissue formation April 27th, 2015

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

A silver lining: UCSB researchers cradle silver nanoclusters inside synthetic DNA to create a programmed, tunable fluorescent array April 23rd, 2015

Scientists Use Nanoscale Building Blocks and DNA 'Glue' to Shape 3D Superlattices: New approach to designing ordered composite materials for possible energy applications April 23rd, 2015

Alliances/Partnerships/Distributorships

How can you see an atom? (video) April 10th, 2015

FibeRio and VF Corporation Form Strategic Partnership to Lead the Apparel and Footwear Markets in Nanofiber Technology April 8th, 2015

UK National Graphene Institute Selects Bruker as Official Partner: World-Leading Graphene Research Facility Purchases Multiple Bruker AFMs April 7th, 2015

NXP and GLOBALFOUNDRIES Announce Production of 40nm Embedded Non-Volatile Memory Technology: Co-developed technology to leverage GLOBALFOUNDRIES 40nm process technology platform March 24th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project